Spaces:
Sleeping
Sleeping
import os | |
os.system('cd fairseq;' | |
'pip install ./; cd ..') | |
os.system('ls -l') | |
import torch | |
import numpy as np | |
from fairseq import utils, tasks | |
from fairseq import checkpoint_utils | |
from utils.eval_utils import eval_step | |
from tasks.mm_tasks.refcoco import RefcocoTask | |
from models.ofa import OFAModel | |
from PIL import Image | |
from torchvision import transforms | |
import cv2 | |
import gradio as gr | |
# Register refcoco task | |
tasks.register_task('refcoco', RefcocoTask) | |
# turn on cuda if GPU is available | |
use_cuda = torch.cuda.is_available() | |
# use fp16 only when GPU is available | |
use_fp16 = False | |
os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/refcocog_large_best.pt; ' | |
'mkdir -p checkpoints; mv refcocog_large_best.pt checkpoints/refcocog.pt') | |
# Load pretrained ckpt & config | |
overrides = {"bpe_dir": "utils/BPE", "eval_cider": False, "beam": 5, | |
"max_len_b": 16, "no_repeat_ngram_size": 3, "seed": 7} | |
models, cfg, task = checkpoint_utils.load_model_ensemble_and_task( | |
utils.split_paths('checkpoints/refcocog.pt'), | |
arg_overrides=overrides | |
) | |
cfg.common.seed = 7 | |
cfg.generation.beam = 5 | |
cfg.generation.min_len = 4 | |
cfg.generation.max_len_a = 0 | |
cfg.generation.max_len_b = 4 | |
cfg.generation.no_repeat_ngram_size = 3 | |
# Fix seed for stochastic decoding | |
if cfg.common.seed is not None and not cfg.generation.no_seed_provided: | |
np.random.seed(cfg.common.seed) | |
utils.set_torch_seed(cfg.common.seed) | |
# Move models to GPU | |
for model in models: | |
model.eval() | |
if use_fp16: | |
model.half() | |
if use_cuda and not cfg.distributed_training.pipeline_model_parallel: | |
model.cuda() | |
model.prepare_for_inference_(cfg) | |
# Initialize generator | |
generator = task.build_generator(models, cfg.generation) | |
mean = [0.5, 0.5, 0.5] | |
std = [0.5, 0.5, 0.5] | |
patch_resize_transform = transforms.Compose([ | |
lambda image: image.convert("RGB"), | |
transforms.Resize((cfg.task.patch_image_size, cfg.task.patch_image_size), interpolation=Image.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=mean, std=std), | |
]) | |
# Text preprocess | |
bos_item = torch.LongTensor([task.src_dict.bos()]) | |
eos_item = torch.LongTensor([task.src_dict.eos()]) | |
pad_idx = task.src_dict.pad() | |
def encode_text(text, length=None, append_bos=False, append_eos=False): | |
s = task.tgt_dict.encode_line( | |
line=task.bpe.encode(text), | |
add_if_not_exist=False, | |
append_eos=False | |
).long() | |
if length is not None: | |
s = s[:length] | |
if append_bos: | |
s = torch.cat([bos_item, s]) | |
if append_eos: | |
s = torch.cat([s, eos_item]) | |
return s | |
patch_image_size = cfg.task.patch_image_size | |
def construct_sample(image: Image, text: str): | |
w, h = image.size | |
w_resize_ratio = torch.tensor(patch_image_size / w).unsqueeze(0) | |
h_resize_ratio = torch.tensor(patch_image_size / h).unsqueeze(0) | |
patch_image = patch_resize_transform(image).unsqueeze(0) | |
patch_mask = torch.tensor([True]) | |
src_text = encode_text(' which region does the text " {} " describe?'.format(text), append_bos=True, | |
append_eos=True).unsqueeze(0) | |
src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text]) | |
sample = { | |
"id": np.array(['42']), | |
"net_input": { | |
"src_tokens": src_text, | |
"src_lengths": src_length, | |
"patch_images": patch_image, | |
"patch_masks": patch_mask, | |
}, | |
"w_resize_ratios": w_resize_ratio, | |
"h_resize_ratios": h_resize_ratio, | |
"region_coords": torch.randn(1, 4) | |
} | |
return sample | |
# Function to turn FP32 to FP16 | |
def apply_half(t): | |
if t.dtype is torch.float32: | |
return t.to(dtype=torch.half) | |
return t | |
# Function for visual grounding | |
def visual_grounding(Image, Text): | |
sample = construct_sample(Image, Text.lower()) | |
sample = utils.move_to_cuda(sample) if use_cuda else sample | |
sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample | |
with torch.no_grad(): | |
result, scores = eval_step(task, generator, models, sample) | |
img = np.asarray(Image) | |
cv2.rectangle( | |
img, | |
(int(result[0]["box"][0]), int(result[0]["box"][1])), | |
(int(result[0]["box"][2]), int(result[0]["box"][3])), | |
(0, 255, 0), | |
3 | |
) | |
return img | |
title = "OFA Visual Grounding" | |
description = "Démonstration pour OFA Visual Grounding. Téléchargez votre image ou cliquez sur l'un des exemples, et rédigez une description concernant un objet spécifique." | |
examples = [['test-1.jpeg', 'black chair'], | |
['test-2.jpeg', 'orange door'], | |
['test-3.jpeg', 'fire extinguisher']] | |
io = gr.Interface(fn=visual_grounding, inputs=[gr.inputs.Image(type='pil'), "textbox"], | |
outputs=gr.outputs.Image(type='numpy'), | |
title=title, description=description, examples=examples, | |
allow_flagging=False, allow_screenshot=False) | |
io.launch() | |