OFA-Visual_Grounding / fairseq /examples /roberta /multiprocessing_bpe_encoder.py
mouaddb's picture
Duplicate from OFA-Sys/OFA-Visual_Grounding
ab95a25
raw
history blame
3.78 kB
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import contextlib
import sys
from collections import Counter
from multiprocessing import Pool
from fairseq.data.encoders.gpt2_bpe import get_encoder
def main():
"""
Helper script to encode raw text with the GPT-2 BPE using multiple processes.
The encoder.json and vocab.bpe files can be obtained here:
- https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json
- https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--encoder-json",
help="path to encoder.json",
)
parser.add_argument(
"--vocab-bpe",
type=str,
help="path to vocab.bpe",
)
parser.add_argument(
"--inputs",
nargs="+",
default=["-"],
help="input files to filter/encode",
)
parser.add_argument(
"--outputs",
nargs="+",
default=["-"],
help="path to save encoded outputs",
)
parser.add_argument(
"--keep-empty",
action="store_true",
help="keep empty lines",
)
parser.add_argument("--workers", type=int, default=20)
args = parser.parse_args()
assert len(args.inputs) == len(
args.outputs
), "number of input and output paths should match"
with contextlib.ExitStack() as stack:
inputs = [
stack.enter_context(open(input, "r", encoding="utf-8"))
if input != "-"
else sys.stdin
for input in args.inputs
]
outputs = [
stack.enter_context(open(output, "w", encoding="utf-8"))
if output != "-"
else sys.stdout
for output in args.outputs
]
encoder = MultiprocessingEncoder(args)
pool = Pool(args.workers, initializer=encoder.initializer)
encoded_lines = pool.imap(encoder.encode_lines, zip(*inputs), 100)
stats = Counter()
for i, (filt, enc_lines) in enumerate(encoded_lines, start=1):
if filt == "PASS":
for enc_line, output_h in zip(enc_lines, outputs):
print(enc_line, file=output_h)
else:
stats["num_filtered_" + filt] += 1
if i % 10000 == 0:
print("processed {} lines".format(i), file=sys.stderr)
for k, v in stats.most_common():
print("[{}] filtered {} lines".format(k, v), file=sys.stderr)
class MultiprocessingEncoder(object):
def __init__(self, args):
self.args = args
def initializer(self):
global bpe
bpe = get_encoder(self.args.encoder_json, self.args.vocab_bpe)
def encode(self, line):
global bpe
ids = bpe.encode(line)
return list(map(str, ids))
def decode(self, tokens):
global bpe
return bpe.decode(tokens)
def encode_lines(self, lines):
"""
Encode a set of lines. All lines will be encoded together.
"""
enc_lines = []
for line in lines:
line = line.strip()
if len(line) == 0 and not self.args.keep_empty:
return ["EMPTY", None]
tokens = self.encode(line)
enc_lines.append(" ".join(tokens))
return ["PASS", enc_lines]
def decode_lines(self, lines):
dec_lines = []
for line in lines:
tokens = map(int, line.strip().split())
dec_lines.append(self.decode(tokens))
return ["PASS", dec_lines]
if __name__ == "__main__":
main()