OFA-Visual_Grounding / fairseq /tests /test_checkpoint_utils.py
mouaddb's picture
Duplicate from OFA-Sys/OFA-Visual_Grounding
ab95a25
raw
history blame
3.86 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import logging
import os
import tempfile
import unittest
from io import StringIO
from unittest.mock import patch
from fairseq import checkpoint_utils
from omegaconf import OmegaConf
from tests.utils import (
create_dummy_data,
preprocess_translation_data,
train_translation_model,
)
class TestCheckpointUtils(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
@contextlib.contextmanager
def _train_transformer(self, seed, extra_args=None):
if extra_args is None:
extra_args = []
with tempfile.TemporaryDirectory(f"_train_transformer_seed{seed}") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"transformer_iwslt_de_en",
[
"--encoder-layers",
"3",
"--decoder-layers",
"3",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--seed",
str(seed),
]
+ extra_args,
)
yield os.path.join(data_dir, "checkpoint_last.pt")
def test_load_model_ensemble_and_task(self):
# with contextlib.redirect_stdout(StringIO()):
with self._train_transformer(seed=123) as model1:
with self._train_transformer(seed=456) as model2:
ensemble, cfg, task = checkpoint_utils.load_model_ensemble_and_task(
filenames=[model1, model2]
)
self.assertEqual(len(ensemble), 2)
# after Transformer has been migrated to Hydra, this will probably
# become cfg.common.seed
self.assertEqual(ensemble[0].args.seed, 123)
self.assertEqual(ensemble[1].args.seed, 456)
# the task from the first model should be returned
self.assertTrue("seed123" in task.cfg.data)
# last cfg is saved
self.assertEqual(cfg.common.seed, 456)
def test_prune_state_dict(self):
with contextlib.redirect_stdout(StringIO()):
extra_args = ["--encoder-layerdrop", "0.01", "--decoder-layerdrop", "0.01"]
with self._train_transformer(seed=1, extra_args=extra_args) as model:
ensemble, cfg, task = checkpoint_utils.load_model_ensemble_and_task(
filenames=[model],
arg_overrides={
"encoder_layers_to_keep": "0,2",
"decoder_layers_to_keep": "1",
},
)
self.assertEqual(len(ensemble), 1)
self.assertEqual(len(ensemble[0].encoder.layers), 2)
self.assertEqual(len(ensemble[0].decoder.layers), 1)
def test_torch_persistent_save_async(self):
state_dict = {}
filename = "async_checkpoint.pt"
with patch(f"{checkpoint_utils.__name__}.PathManager.opena") as mock_opena:
with patch(f"{checkpoint_utils.__name__}._torch_persistent_save") as mock_save:
checkpoint_utils.torch_persistent_save(
state_dict, filename, async_write=True
)
mock_opena.assert_called_with(filename, "wb")
mock_save.assert_called()
if __name__ == "__main__":
unittest.main()