Spaces:
Runtime error
Runtime error
import cv2 | |
import torch | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import time | |
midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large") | |
device = "cpu" | |
midas.to(device) | |
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") | |
transform = midas_transforms.dpt_transform | |
def depth(img): | |
original_image = img | |
cv_image = np.array(img) | |
img = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB) | |
input_batch = transform(img).to(device) | |
with torch.no_grad(): | |
prediction = midas(input_batch) | |
prediction = torch.nn.functional.interpolate( | |
prediction.unsqueeze(1), | |
size=img.shape[:2], | |
mode="bicubic", | |
align_corners=False, | |
).squeeze() | |
output = prediction.cpu().numpy() | |
formatted = (output * 255 / np.max(output)).astype('uint8') | |
img = Image.fromarray(formatted) | |
# create new image with with original_image and img side by side | |
new_im = Image.new('RGB', (original_image.width * 2, original_image.height)) | |
new_im.paste(original_image, (0,0)) | |
new_im.paste(img, (original_image.width,0)) | |
# save the image to a file: (removed for hosting on HF) | |
#new_im.save(f'RGBDs/{int(time.time())}_RGBD.png') | |
return new_im | |
inputs = gr.inputs.Image(type='pil', label="Original Image") | |
outputs = gr.outputs.Image(type="pil",label="Output Image") | |
title = "RGB to RGBD for Looking Glass (using MiDaS)" | |
description = "Takes an RGB image and creates the depth + combines to the RGB image. Depth is predicted by MiDaS. This is a demo of the Looking Glass. For more information, visit https://lookingglassfactory.com" | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.01341v3'>Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer</a> | <a href='https://github.com/intel-isl/MiDaS'>Github Repo</a></p>" | |
gr.Interface(depth, inputs, outputs, title=title, description=description, article=article).launch() |