Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,22 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
-
import torch
|
4 |
|
5 |
@st.cache_resource(show_spinner="Loading Model & Tokenizer")
|
6 |
def load_model():
|
7 |
# This is cached and will not run again and again.
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
import torch
|
|
|
10 |
|
11 |
base_model = AutoModelForCausalLM.from_pretrained(
|
12 |
-
"
|
|
|
|
|
|
|
|
|
13 |
|
14 |
tokenizer = AutoTokenizer.from_pretrained("mosama/Qwen2.5-0.5B-Pretrained-ar-end-urd-500")
|
15 |
st.success('Model & Tokenizer Loaded Successfully!', icon="β
")
|
16 |
-
return
|
17 |
|
18 |
st.title("Qwen2.5-0.5B Arabic, English & Urdu Continuous Pretrained")
|
19 |
|
@@ -32,31 +35,39 @@ if not st.session_state.messages:
|
|
32 |
st.write("Hello π I am an AI bot powered by Qwen 2.5 0.5B model.")
|
33 |
st.session_state.messages.append({"role": "assistant", "content": "Hello π I am an AI bot powered by Qwen 2.5 0.5B model."})
|
34 |
|
35 |
-
|
|
|
|
|
36 |
# Display user message in chat message container
|
37 |
with st.chat_message("user"):
|
38 |
st.markdown(prompt)
|
39 |
# Add user message to chat history
|
40 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
41 |
|
42 |
-
if prompt:
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
st.
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
|
3 |
@st.cache_resource(show_spinner="Loading Model & Tokenizer")
|
4 |
def load_model():
|
5 |
# This is cached and will not run again and again.
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
import torch
|
8 |
+
from peft import PeftModel
|
9 |
|
10 |
base_model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
"unsloth/Qwen2.5-0.5B", device_map="cpu", torch_dtype=torch.bfloat16)
|
12 |
+
|
13 |
+
m = PeftModel.from_pretrained(base_model, "mosama/Qwen2.5-0.5B-Pretraining-ar-eng-urd-LoRA-Adapters")
|
14 |
+
|
15 |
+
merged_model = m.merge_and_unload()
|
16 |
|
17 |
tokenizer = AutoTokenizer.from_pretrained("mosama/Qwen2.5-0.5B-Pretrained-ar-end-urd-500")
|
18 |
st.success('Model & Tokenizer Loaded Successfully!', icon="β
")
|
19 |
+
return merged_model, tokenizer
|
20 |
|
21 |
st.title("Qwen2.5-0.5B Arabic, English & Urdu Continuous Pretrained")
|
22 |
|
|
|
35 |
st.write("Hello π I am an AI bot powered by Qwen 2.5 0.5B model.")
|
36 |
st.session_state.messages.append({"role": "assistant", "content": "Hello π I am an AI bot powered by Qwen 2.5 0.5B model."})
|
37 |
|
38 |
+
st.session_state.state_chat_input = False
|
39 |
+
|
40 |
+
if prompt := st.chat_input("Say Something", key="input_1", disabled=st.session_state.state_chat_input):
|
41 |
# Display user message in chat message container
|
42 |
with st.chat_message("user"):
|
43 |
st.markdown(prompt)
|
44 |
# Add user message to chat history
|
45 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
46 |
|
47 |
+
if prompt or st.session_state.state_chat_input:
|
48 |
+
if st.session_state.state_chat_input:
|
49 |
+
with st.spinner(text="Generating response..."):
|
50 |
+
model_inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
51 |
+
print(model_inputs)
|
52 |
+
generated_ids = model.generate(
|
53 |
+
**model_inputs,
|
54 |
+
max_new_tokens=50,
|
55 |
+
repetition_penalty=1.2,
|
56 |
+
temperature=0.5,
|
57 |
+
do_sample=True,
|
58 |
+
top_p=0.9,
|
59 |
+
top_k=20
|
60 |
+
)
|
61 |
+
print("Generated Response!")
|
62 |
+
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
63 |
+
|
64 |
+
# Display assistant response in chat message container
|
65 |
+
with st.chat_message("assistant"):
|
66 |
+
st.markdown(response)
|
67 |
+
# Add assistant response to chat history
|
68 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
69 |
+
st.session_state.state_chat_input = False
|
70 |
+
st.rerun()
|
71 |
+
else:
|
72 |
+
st.session_state.state_chat_input = True
|
73 |
+
st.rerun()
|