Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
from typing import * | |
from ._helpers import batched | |
__all__ = [ | |
'triangulate', | |
'compute_face_normal', | |
'compute_face_angles', | |
'compute_vertex_normal', | |
'compute_vertex_normal_weighted', | |
'remove_unreferenced_vertices', | |
'remove_corrupted_faces', | |
'merge_duplicate_vertices', | |
'subdivide_mesh_simple', | |
'compute_face_tbn', | |
'compute_vertex_tbn', | |
'laplacian', | |
'laplacian_smooth_mesh', | |
'taubin_smooth_mesh', | |
'laplacian_hc_smooth_mesh', | |
] | |
def triangulate( | |
faces: torch.Tensor, | |
vertices: torch.Tensor = None, | |
backslash: bool = None | |
) -> torch.Tensor: | |
""" | |
Triangulate a polygonal mesh. | |
Args: | |
faces (torch.Tensor): [..., L, P] polygonal faces | |
vertices (torch.Tensor, optional): [..., N, 3] 3-dimensional vertices. | |
If given, the triangulation is performed according to the distance | |
between vertices. Defaults to None. | |
backslash (torch.Tensor, optional): [..., L] boolean array indicating | |
how to triangulate the quad faces. Defaults to None. | |
Returns: | |
(torch.Tensor): [L * (P - 2), 3] triangular faces | |
""" | |
if faces.shape[-1] == 3: | |
return faces | |
P = faces.shape[-1] | |
if vertices is not None: | |
assert faces.shape[-1] == 4, "now only support quad mesh" | |
if backslash is None: | |
faces_idx = faces.long() | |
backslash = torch.norm(vertices[faces_idx[..., 0]] - vertices[faces_idx[..., 2]], p=2, dim=-1) < \ | |
torch.norm(vertices[faces_idx[..., 1]] - vertices[faces_idx[..., 3]], p=2, dim=-1) | |
if backslash is None: | |
loop_indice = torch.stack([ | |
torch.zeros(P - 2, dtype=int), | |
torch.arange(1, P - 1, 1, dtype=int), | |
torch.arange(2, P, 1, dtype=int) | |
], axis=1) | |
return faces[:, loop_indice].reshape(-1, 3) | |
else: | |
assert faces.shape[-1] == 4, "now only support quad mesh" | |
if isinstance(backslash, bool): | |
if backslash: | |
faces = faces[:, [0, 1, 2, 0, 2, 3]].reshape(-1, 3) | |
else: | |
faces = faces[:, [0, 1, 3, 3, 1, 2]].reshape(-1, 3) | |
else: | |
faces = torch.where( | |
backslash[:, None], | |
faces[:, [0, 1, 2, 0, 2, 3]], | |
faces[:, [0, 1, 3, 3, 1, 2]] | |
).reshape(-1, 3) | |
return faces | |
def compute_face_normal( | |
vertices: torch.Tensor, | |
faces: torch.Tensor | |
) -> torch.Tensor: | |
""" | |
Compute face normals of a triangular mesh | |
Args: | |
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices | |
faces (torch.Tensor): [..., T, 3] triangular face indices | |
Returns: | |
normals (torch.Tensor): [..., T, 3] face normals | |
""" | |
N = vertices.shape[0] | |
index = torch.arange(N)[:, None] | |
normal = torch.cross( | |
vertices[index, faces[..., 1].long()] - vertices[index, faces[..., 0].long()], | |
vertices[index, faces[..., 2].long()] - vertices[index, faces[..., 0].long()], | |
dim=-1 | |
) | |
return F.normalize(normal, p=2, dim=-1) | |
def compute_face_angles( | |
vertices: torch.Tensor, | |
faces: torch.Tensor | |
) -> torch.Tensor: | |
""" | |
Compute face angles of a triangular mesh | |
Args: | |
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices | |
faces (torch.Tensor): [T, 3] triangular face indices | |
Returns: | |
angles (torch.Tensor): [..., T, 3] face angles | |
""" | |
face_angles = [] | |
for i in range(3): | |
edge1 = torch.index_select(vertices, dim=-2, index=faces[:, (i + 1) % 3]) - torch.index_select(vertices, dim=-2, index=faces[:, i]) | |
edge2 = torch.index_select(vertices, dim=-2, index=faces[:, (i + 2) % 3]) - torch.index_select(vertices, dim=-2, index=faces[:, i]) | |
face_angle = torch.arccos(torch.sum(F.normalize(edge1, p=2, dim=-1) * F.normalize(edge2, p=2, dim=-1), dim=-1)) | |
face_angles.append(face_angle) | |
face_angles = torch.stack(face_angles, dim=-1) | |
return face_angles | |
def compute_vertex_normal( | |
vertices: torch.Tensor, | |
faces: torch.Tensor, | |
face_normal: torch.Tensor = None | |
) -> torch.Tensor: | |
""" | |
Compute vertex normals of a triangular mesh by averaging neightboring face normals | |
Args: | |
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices | |
faces (torch.Tensor): [T, 3] triangular face indices | |
face_normal (torch.Tensor, optional): [..., T, 3] face normals. | |
None to compute face normals from vertices and faces. Defaults to None. | |
Returns: | |
normals (torch.Tensor): [..., N, 3] vertex normals | |
""" | |
N = vertices.shape[0] | |
assert faces.shape[-1] == 3, "Only support triangular mesh" | |
if face_normal is None: | |
face_normal = compute_face_normal(vertices, faces) | |
face_normal = face_normal[:, :, None, :].expand(-1, -1, 3, -1).flatten(-3, -2) | |
faces = faces.flatten() | |
vertex_normal = torch.index_put(torch.zeros_like(vertices), (torch.arange(N)[:, None], faces[None, :]), face_normal, accumulate=True) | |
vertex_normal = F.normalize(vertex_normal, p=2, dim=-1) | |
return vertex_normal | |
def compute_vertex_normal_weighted( | |
vertices: torch.Tensor, | |
faces: torch.Tensor, | |
face_normal: torch.Tensor = None | |
) -> torch.Tensor: | |
""" | |
Compute vertex normals of a triangular mesh by weighted sum of neightboring face normals | |
according to the angles | |
Args: | |
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices | |
faces (torch.Tensor): [T, 3] triangular face indices | |
face_normal (torch.Tensor, optional): [..., T, 3] face normals. | |
None to compute face normals from vertices and faces. Defaults to None. | |
Returns: | |
normals (torch.Tensor): [..., N, 3] vertex normals | |
""" | |
N = vertices.shape[0] | |
if face_normal is None: | |
face_normal = compute_face_normal(vertices, faces) | |
face_angle = compute_face_angles(vertices, faces) | |
face_normal = face_normal[:, :, None, :].expand(-1, -1, 3, -1) * face_angle[..., None] | |
vertex_normal = torch.index_put(torch.zeros_like(vertices), (torch.arange(N)[:, None], faces.view(N, -1)), face_normal.view(N, -1, 3), accumulate=True) | |
vertex_normal = F.normalize(vertex_normal, p=2, dim=-1) | |
return vertex_normal | |
def remove_unreferenced_vertices( | |
faces: torch.Tensor, | |
*vertice_attrs, | |
return_indices: bool = False | |
) -> Tuple[torch.Tensor, ...]: | |
""" | |
Remove unreferenced vertices of a mesh. | |
Unreferenced vertices are removed, and the face indices are updated accordingly. | |
Args: | |
faces (torch.Tensor): [T, P] face indices | |
*vertice_attrs: vertex attributes | |
Returns: | |
faces (torch.Tensor): [T, P] face indices | |
*vertice_attrs: vertex attributes | |
indices (torch.Tensor, optional): [N] indices of vertices that are kept. Defaults to None. | |
""" | |
P = faces.shape[-1] | |
fewer_indices, inv_map = torch.unique(faces, return_inverse=True) | |
faces = inv_map.to(torch.int32).reshape(-1, P) | |
ret = [faces] | |
for attr in vertice_attrs: | |
ret.append(attr[fewer_indices]) | |
if return_indices: | |
ret.append(fewer_indices) | |
return tuple(ret) | |
def remove_corrupted_faces( | |
faces: torch.Tensor | |
) -> torch.Tensor: | |
""" | |
Remove corrupted faces (faces with duplicated vertices) | |
Args: | |
faces (torch.Tensor): [T, 3] triangular face indices | |
Returns: | |
torch.Tensor: [T_, 3] triangular face indices | |
""" | |
corrupted = (faces[:, 0] == faces[:, 1]) | (faces[:, 1] == faces[:, 2]) | (faces[:, 2] == faces[:, 0]) | |
return faces[~corrupted] | |
def merge_duplicate_vertices( | |
vertices: torch.Tensor, | |
faces: torch.Tensor, | |
tol: float = 1e-6 | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Merge duplicate vertices of a triangular mesh. | |
Duplicate vertices are merged by selecte one of them, and the face indices are updated accordingly. | |
Args: | |
vertices (torch.Tensor): [N, 3] 3-dimensional vertices | |
faces (torch.Tensor): [T, 3] triangular face indices | |
tol (float, optional): tolerance for merging. Defaults to 1e-6. | |
Returns: | |
vertices (torch.Tensor): [N_, 3] 3-dimensional vertices | |
faces (torch.Tensor): [T, 3] triangular face indices | |
""" | |
vertices_round = torch.round(vertices / tol) | |
uni, uni_inv = torch.unique(vertices_round, dim=0, return_inverse=True) | |
uni[uni_inv] = vertices | |
faces = uni_inv[faces] | |
return uni, faces | |
def subdivide_mesh_simple(vertices: torch.Tensor, faces: torch.Tensor, n: int = 1) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Subdivide a triangular mesh by splitting each triangle into 4 smaller triangles. | |
NOTE: All original vertices are kept, and new vertices are appended to the end of the vertex list. | |
Args: | |
vertices (torch.Tensor): [N, 3] 3-dimensional vertices | |
faces (torch.Tensor): [T, 3] triangular face indices | |
n (int, optional): number of subdivisions. Defaults to 1. | |
Returns: | |
vertices (torch.Tensor): [N_, 3] subdivided 3-dimensional vertices | |
faces (torch.Tensor): [4 * T, 3] subdivided triangular face indices | |
""" | |
for _ in range(n): | |
edges = torch.stack([faces[:, [0, 1]], faces[:, [1, 2]], faces[:, [2, 0]]], dim=0) | |
edges = torch.sort(edges, dim=2) | |
uni_edges, uni_inv = torch.unique(edges, return_inverse=True, dim=0) | |
midpoints = (vertices[uni_edges[:, 0]] + vertices[uni_edges[:, 1]]) / 2 | |
n_vertices = vertices.shape[0] | |
vertices = torch.cat([vertices, midpoints], dim=0) | |
faces = torch.cat([ | |
torch.stack([faces[:, 0], n_vertices + uni_inv[0], n_vertices + uni_inv[2]], axis=1), | |
torch.stack([faces[:, 1], n_vertices + uni_inv[1], n_vertices + uni_inv[0]], axis=1), | |
torch.stack([faces[:, 2], n_vertices + uni_inv[2], n_vertices + uni_inv[1]], axis=1), | |
torch.stack([n_vertices + uni_inv[0], n_vertices + uni_inv[1], n_vertices + uni_inv[2]], axis=1), | |
], dim=0) | |
return vertices, faces | |
def compute_face_tbn(pos: torch.Tensor, faces_pos: torch.Tensor, uv: torch.Tensor, faces_uv: torch.Tensor, eps: float = 1e-7) -> torch.Tensor: | |
"""compute TBN matrix for each face | |
Args: | |
pos (torch.Tensor): shape (..., N_pos, 3), positions | |
faces_pos (torch.Tensor): shape(T, 3) | |
uv (torch.Tensor): shape (..., N_uv, 3) uv coordinates, | |
faces_uv (torch.Tensor): shape(T, 3) | |
Returns: | |
torch.Tensor: (..., T, 3, 3) TBN matrix for each face. Note TBN vectors are normalized but not necessarily orthognal | |
""" | |
e01 = torch.index_select(pos, dim=-2, index=faces_pos[:, 1]) - torch.index_select(pos, dim=-2, index=faces_pos[:, 0]) | |
e02 = torch.index_select(pos, dim=-2, index=faces_pos[:, 2]) - torch.index_select(pos, dim=-2, index=faces_pos[:, 0]) | |
uv01 = torch.index_select(uv, dim=-2, index=faces_uv[:, 1]) - torch.index_select(uv, dim=-2, index=faces_uv[:, 0]) | |
uv02 = torch.index_select(uv, dim=-2, index=faces_uv[:, 2]) - torch.index_select(uv, dim=-2, index=faces_uv[:, 0]) | |
normal = torch.cross(e01, e02) | |
tangent_bitangent = torch.stack([e01, e02], dim=-1) @ torch.inverse(torch.stack([uv01, uv02], dim=-1)) | |
tbn = torch.cat([tangent_bitangent, normal.unsqueeze(-1)], dim=-1) | |
tbn = tbn / (torch.norm(tbn, p=2, dim=-2, keepdim=True) + eps) | |
return tbn | |
def compute_vertex_tbn(faces_topo: torch.Tensor, pos: torch.Tensor, faces_pos: torch.Tensor, uv: torch.Tensor, faces_uv: torch.Tensor) -> torch.Tensor: | |
"""compute TBN matrix for each face | |
Args: | |
faces_topo (torch.Tensor): (T, 3), face indice of topology | |
pos (torch.Tensor): shape (..., N_pos, 3), positions | |
faces_pos (torch.Tensor): shape(T, 3) | |
uv (torch.Tensor): shape (..., N_uv, 3) uv coordinates, | |
faces_uv (torch.Tensor): shape(T, 3) | |
Returns: | |
torch.Tensor: (..., V, 3, 3) TBN matrix for each face. Note TBN vectors are normalized but not necessarily orthognal | |
""" | |
n_vertices = faces_topo.max().item() + 1 | |
n_tri = faces_topo.shape[-2] | |
batch_shape = pos.shape[:-2] | |
face_tbn = compute_face_tbn(pos, faces_pos, uv, faces_uv) # (..., T, 3, 3) | |
face_tbn = face_tbn[..., :, None, :, :].repeat(*[1] * len(batch_shape), 1, 3, 1, 1).view(*batch_shape, n_tri * 3, 3, 3) # (..., T * 3, 3, 3) | |
vertex_tbn = torch.index_add(torch.zeros(*batch_shape, n_vertices, 3, 3).to(face_tbn), dim=-3, index=faces_topo.view(-1), source=face_tbn) | |
vertex_tbn = vertex_tbn / (torch.norm(vertex_tbn, p=2, dim=-2, keepdim=True) + 1e-7) | |
return vertex_tbn | |
def laplacian(vertices: torch.Tensor, faces: torch.Tensor, weight: str = 'uniform') -> torch.Tensor: | |
"""Laplacian smooth with cotangent weights | |
Args: | |
vertices (torch.Tensor): shape (..., N, 3) | |
faces (torch.Tensor): shape (T, 3) | |
weight (str): 'uniform' or 'cotangent' | |
""" | |
sum_verts = torch.zeros_like(vertices) # (..., N, 3) | |
sum_weights = torch.zeros(*vertices.shape[:-1]).to(vertices) # (..., N) | |
face_verts = torch.index_select(vertices, -2, faces.view(-1)).view(*vertices.shape[:-2], *faces.shape, vertices.shape[-1]) # (..., T, 3) | |
if weight == 'cotangent': | |
for i in range(3): | |
e1 = face_verts[..., (i + 1) % 3, :] - face_verts[..., i, :] | |
e2 = face_verts[..., (i + 2) % 3, :] - face_verts[..., i, :] | |
cot_angle = (e1 * e2).sum(dim=-1) / torch.cross(e1, e2, dim=-1).norm(p=2, dim=-1) # (..., T, 3) | |
sum_verts = torch.index_add(sum_verts, -2, faces[:, (i + 1) % 3], face_verts[..., (i + 2) % 3, :] * cot_angle[..., None]) | |
sum_weights = torch.index_add(sum_weights, -1, faces[:, (i + 1) % 3], cot_angle) | |
sum_verts = torch.index_add(sum_verts, -2, faces[:, (i + 2) % 3], face_verts[..., (i + 1) % 3, :] * cot_angle[..., None]) | |
sum_weights = torch.index_add(sum_weights, -1, faces[:, (i + 2) % 3], cot_angle) | |
elif weight == 'uniform': | |
for i in range(3): | |
sum_verts = torch.index_add(sum_verts, -2, faces[:, i], face_verts[..., (i + 1) % 3, :]) | |
sum_weights = torch.index_add(sum_weights, -1, faces[:, i], torch.ones_like(face_verts[..., i, 0])) | |
else: | |
raise NotImplementedError | |
return sum_verts / (sum_weights[..., None] + 1e-7) | |
def laplacian_smooth_mesh(vertices: torch.Tensor, faces: torch.Tensor, weight: str = 'uniform', times: int = 5) -> torch.Tensor: | |
"""Laplacian smooth with cotangent weights | |
Args: | |
vertices (torch.Tensor): shape (..., N, 3) | |
faces (torch.Tensor): shape (T, 3) | |
weight (str): 'uniform' or 'cotangent' | |
""" | |
for _ in range(times): | |
vertices = laplacian(vertices, faces, weight) | |
return vertices | |
def taubin_smooth_mesh(vertices: torch.Tensor, faces: torch.Tensor, lambda_: float = 0.5, mu_: float = -0.51) -> torch.Tensor: | |
"""Taubin smooth mesh | |
Args: | |
vertices (torch.Tensor): _description_ | |
faces (torch.Tensor): _description_ | |
lambda_ (float, optional): _description_. Defaults to 0.5. | |
mu_ (float, optional): _description_. Defaults to -0.51. | |
Returns: | |
torch.Tensor: _description_ | |
""" | |
pt = vertices + lambda_ * laplacian_smooth_mesh(vertices, faces) | |
p = pt + mu_ * laplacian_smooth_mesh(pt, faces) | |
return p | |
def laplacian_hc_smooth_mesh(vertices: torch.Tensor, faces: torch.Tensor, times: int = 5, alpha: float = 0.5, beta: float = 0.5, weight: str = 'uniform'): | |
"""HC algorithm from Improved Laplacian Smoothing of Noisy Surface Meshes by J.Vollmer et al. | |
""" | |
p = vertices | |
for i in range(times): | |
q = p | |
p = laplacian_smooth_mesh(vertices, faces, weight) | |
b = p - (alpha * vertices + (1 - alpha) * q) | |
p = p - (beta * b + (1 - beta) * laplacian_smooth_mesh(b, faces, weight)) * 0.8 | |
return p | |