Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,13 +10,16 @@ import timm
|
|
10 |
feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-101")
|
11 |
model = ResNetForImageClassification.from_pretrained("microsoft/resnet-101")
|
12 |
model.eval()
|
13 |
-
print(model)
|
14 |
|
|
|
|
|
15 |
|
|
|
16 |
|
17 |
import os
|
18 |
|
19 |
def print_bn():
|
|
|
20 |
bn_data = []
|
21 |
for m in model.modules():
|
22 |
if(type(m) is nn.BatchNorm2d):
|
@@ -25,9 +28,11 @@ def print_bn():
|
|
25 |
bn_data.extend(m.running_var.data.numpy().tolist())
|
26 |
bn_data.append(m.momentum)
|
27 |
print(len(bn_data))
|
|
|
28 |
return bn_data
|
29 |
|
30 |
def update_bn(image):
|
|
|
31 |
cursor_im = 0
|
32 |
image = T.Resize((90,90))(image)
|
33 |
image = image.reshape(-1)
|
@@ -50,6 +55,8 @@ def greet(image):
|
|
50 |
bn_data = print_bn()
|
51 |
return ','.join([f'{x:.2f}' for x in bn_data])
|
52 |
else:
|
|
|
|
|
53 |
print(type(image))
|
54 |
image = torch.tensor(image).float()
|
55 |
print(image.min(), image.max())
|
|
|
10 |
feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-101")
|
11 |
model = ResNetForImageClassification.from_pretrained("microsoft/resnet-101")
|
12 |
model.eval()
|
|
|
13 |
|
14 |
+
|
15 |
+
print(model)
|
16 |
|
17 |
+
print(model.resnet.embedder.embedder.convolution.weight.data)
|
18 |
|
19 |
import os
|
20 |
|
21 |
def print_bn():
|
22 |
+
|
23 |
bn_data = []
|
24 |
for m in model.modules():
|
25 |
if(type(m) is nn.BatchNorm2d):
|
|
|
28 |
bn_data.extend(m.running_var.data.numpy().tolist())
|
29 |
bn_data.append(m.momentum)
|
30 |
print(len(bn_data))
|
31 |
+
bn_data.extend(model.resnet.embedder.embedder.convolution.weight.data.numpy().tolist())
|
32 |
return bn_data
|
33 |
|
34 |
def update_bn(image):
|
35 |
+
|
36 |
cursor_im = 0
|
37 |
image = T.Resize((90,90))(image)
|
38 |
image = image.reshape(-1)
|
|
|
55 |
bn_data = print_bn()
|
56 |
return ','.join([f'{x:.2f}' for x in bn_data])
|
57 |
else:
|
58 |
+
conv_layer = model.resnet.embedder.embedder.convolution
|
59 |
+
conv_layer.weight.data = torch.ones_like(conv_layer.weight.data)
|
60 |
print(type(image))
|
61 |
image = torch.tensor(image).float()
|
62 |
print(image.min(), image.max())
|