Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import torch | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
from transformers import AutoImageProcessor, SiglipForImageClassification | |
# β Load model and processor (no manual files) | |
model_name = "prithivMLmods/deepfake-detector-model-v1" | |
processor = AutoImageProcessor.from_pretrained(model_name) | |
model = SiglipForImageClassification.from_pretrained(model_name) | |
model.eval() | |
# β Face detector | |
face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") | |
# β Deepfake detection function | |
def analyze(video_path): | |
if video_path is None: | |
return "β Please upload a video", None | |
cap = cv2.VideoCapture(video_path) | |
frame_preds = [] | |
frame_count = 0 | |
max_frames = 60 | |
while True: | |
ret, frame = cap.read() | |
if not ret or frame_count >= max_frames: | |
break | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
faces = face_detector.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5) | |
found = False | |
for (x, y, w, h) in faces: | |
face = frame[y:y+h, x:x+w] | |
if face.size == 0: | |
continue | |
face_rgb = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(face_rgb) | |
inputs = processor(images=pil_image, return_tensors="pt") | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
fake_prob = torch.softmax(logits, dim=-1)[0][1].item() | |
frame_preds.append(fake_prob) | |
found = True | |
break | |
if not found: | |
frame_preds.append(0.5) # neutral prediction | |
frame_count += 1 | |
cap.release() | |
if not frame_preds: | |
return "β No faces found. Try a better-quality video.", None | |
avg = np.mean(frame_preds) | |
verdict = "FAKE" if avg > 0.5 else "REAL" | |
result = f"β FINAL RESULT: **{verdict}**\nπ’ Confidence: {avg:.2f}" | |
# β Plot | |
fig, ax = plt.subplots(figsize=(6, 4)) | |
ax.hist(frame_preds, bins=10, color="red" if avg > 0.5 else "green", edgecolor="black") | |
ax.set_title("Fake Confidence per Frame") | |
ax.set_xlabel("Confidence (0=Real, 1=Fake)") | |
ax.set_ylabel("Frame Count") | |
ax.grid(True) | |
return result, fig | |
# β Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## π Deepfake Detector (Colab Version Converted to Gradio)") | |
gr.Markdown("Upload a short `.mp4` video and get a REAL or FAKE decision with confidence histogram.") | |
video = gr.Video(label="Upload your video") | |
result = gr.Markdown() | |
plot = gr.Plot() | |
button = gr.Button("π Analyze") | |
button.click(fn=analyze, inputs=video, outputs=[result, plot]) | |
demo.queue().launch() | |