cv_backbones / app.py
admin
upd gradio
1efa705
raw
history blame
4.17 kB
import os
import re
import json
import requests
import gradio as gr
import pandas as pd
from tqdm import tqdm
from bs4 import BeautifulSoup
cache_json = "cv_backbones.json"
def parse_url(url):
response = requests.get(url)
html = response.text
return BeautifulSoup(html, "html.parser")
def special_type(m_ver):
m_type = re.search("[a-zA-Z]+", m_ver).group(0)
if m_type == "wide" or m_type == "resnext":
return "resnet"
elif m_type == "swin":
return "swin_transformer"
elif m_type == "inception":
return "googlenet"
return m_type
def info_on_dataset(m_ver, m_type, in1k_span):
url_span = in1k_span.find_next_sibling("span", {"class": "s2"})
size_span = url_span.find_next_sibling("span", {"class": "mi"})
m_url = str(url_span.text[1:-1])
input_size = int(size_span.text)
m_dict = {"ver": m_ver, "type": m_type, "input_size": input_size, "url": m_url}
return m_dict, size_span
def gen_dataframe(url="https://pytorch.org/vision/main/_modules/"):
torch_page = parse_url(url)
article = torch_page.find("article", {"id": "pytorch-article"})
ul = article.find("ul").find("ul")
in1k_v1, in1k_v2 = [], []
for li in tqdm(ul.find_all("li"), desc="Crawling cv backbone info..."):
name = str(li.text)
if name.__contains__("torchvision.models.") and len(name.split(".")) == 3:
if (
name.__contains__("_api")
or name.__contains__("feature_extraction")
or name.__contains__("maxvit")
):
continue
href = li.find("a").get("href")
model_page = parse_url(url + href)
divs = model_page.select("div.viewcode-block")
for div in divs:
div_id = str(div["id"])
if div_id.__contains__("_Weights"):
m_ver = div_id.split("_Weight")[0].lower()
if m_ver.__contains__("swin_v2_"):
continue
m_type = special_type(m_ver)
in1k_v1_span = div.find(
name="span", attrs={"class": "n"}, string="IMAGENET1K_V1"
)
if not in1k_v1_span:
continue
m_dict, size_span = info_on_dataset(m_ver, m_type, in1k_v1_span)
in1k_v1.append(m_dict)
in1k_v2_span = size_span.find_next_sibling(
name="span", attrs={"class": "n"}, string="IMAGENET1K_V2"
)
if in1k_v2_span:
m_dict, _ = info_on_dataset(m_ver, m_type, in1k_v2_span)
in1k_v2.append(m_dict)
dataset = {"IMAGENET1K_V1": in1k_v1, "IMAGENET1K_V2": in1k_v2}
with open("IMAGENET1K_V1.jsonl", "w", encoding="utf-8") as jsonl_file:
for item in in1k_v1:
jsonl_file.write(json.dumps(item) + "\n")
with open("IMAGENET1K_V2.jsonl", "w", encoding="utf-8") as jsonl_file:
for item in in1k_v2:
jsonl_file.write(json.dumps(item) + "\n")
return dataset
def inference(subset):
cache_json = f"{subset}.jsonl"
if os.path.exists(cache_json):
with open(cache_json, "r", encoding="utf-8") as jsonl_file:
dataset = [json.loads(line) for line in jsonl_file]
else:
dataset = gen_dataframe()[subset]
return pd.DataFrame(dataset), cache_json
def sync(subset):
cache_json = f"{subset}.jsonl"
if os.path.exists(cache_json):
os.remove(cache_json)
return None
with gr.Blocks() as demo:
with gr.Row():
subset_opt = gr.Dropdown(
choices=["IMAGENET1K_V1", "IMAGENET1K_V2"], value="IMAGENET1K_V1"
)
sync_btn = gr.Button("Clean cache")
dld_file = gr.components.File(label="Download JSON lines")
with gr.Row():
data_frame = gr.Dataframe(headers=["ver", "type", "input_size", "url"])
subset_opt.change(inference, inputs=subset_opt, outputs=[data_frame, dld_file])
sync_btn.click(sync, inputs=subset_opt, outputs=dld_file)
demo.launch()