momoyukki commited on
Commit
e4ebacd
·
verified ·
1 Parent(s): 3360601

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +108 -36
app.py CHANGED
@@ -1,3 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
  import nltk
@@ -47,43 +151,11 @@ def generate_title():
47
  st.session_state.text = st_text_area
48
 
49
  # tokenize text
50
- inputs = ["summarize: " + st_text_area]
51
- inputs = tokenizer(inputs, return_tensors="pt")
52
-
53
- # compute span boundaries
54
- num_tokens = len(inputs["input_ids"][0])
55
- print(f"Input has {num_tokens} tokens")
56
- max_input_length = 500
57
- num_spans = math.ceil(num_tokens / max_input_length)
58
- print(f"Input has {num_spans} spans")
59
- overlap = math.ceil((num_spans * max_input_length - num_tokens) / max(num_spans - 1, 1))
60
- spans_boundaries = []
61
- start = 0
62
- for i in range(num_spans):
63
- spans_boundaries.append([start + max_input_length * i, start + max_input_length * (i + 1)])
64
- start -= overlap
65
- print(f"Span boundaries are {spans_boundaries}")
66
- spans_boundaries_selected = []
67
- j = 0
68
- for _ in range(num_titles):
69
- spans_boundaries_selected.append(spans_boundaries[j])
70
- j += 1
71
- if j == len(spans_boundaries):
72
- j = 0
73
- print(f"Selected span boundaries are {spans_boundaries_selected}")
74
-
75
- # transform input with spans
76
- tensor_ids = [inputs["input_ids"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries_selected]
77
- tensor_masks = [inputs["attention_mask"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries_selected]
78
-
79
- inputs = {
80
- "input_ids": torch.stack(tensor_ids),
81
- "attention_mask": torch.stack(tensor_masks)
82
- }
83
 
84
  # compute predictions
85
- outputs = model.generate(**inputs, do_sample=True, temperature=temperature)
86
- decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
87
  predicted_titles = [nltk.sent_tokenize(decoded_output.strip())[0] for decoded_output in decoded_outputs]
88
 
89
  st.session_state.titles = predicted_titles
@@ -99,4 +171,4 @@ if len(st.session_state.titles) > 0:
99
  with st.container():
100
  st.subheader("Generated titles")
101
  for title in st.session_state.titles:
102
- st.markdown("__" + title + "__")
 
1
+ # import streamlit as st
2
+ # from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
+ # import nltk
4
+ # import math
5
+ # import torch
6
+
7
+ # # model_name = "fabiochiu/t5-base-medium-title-generation"
8
+ # model_name = "momoyukki/t5-base-news-title-generation_model"
9
+ # max_input_length = 512
10
+
11
+ # st.header("Generate candidate titles for news")
12
+
13
+ # st_model_load = st.text('Loading title generator model...')
14
+
15
+ # @st.cache(allow_output_mutation=True)
16
+ # def load_model():
17
+ # print("Loading model...")
18
+ # tokenizer = AutoTokenizer.from_pretrained(model_name)
19
+ # model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
20
+ # nltk.download('punkt')
21
+ # print("Model loaded!")
22
+ # return tokenizer, model
23
+
24
+ # tokenizer, model = load_model()
25
+ # st.success('Model loaded!')
26
+ # st_model_load.text("")
27
+
28
+ # with st.sidebar:
29
+ # st.header("Model parameters")
30
+ # if 'num_titles' not in st.session_state:
31
+ # st.session_state.num_titles = 5
32
+ # def on_change_num_titles():
33
+ # st.session_state.num_titles = num_titles
34
+ # num_titles = st.slider("Number of titles to generate", min_value=1, max_value=10, value=1, step=1, on_change=on_change_num_titles)
35
+ # if 'temperature' not in st.session_state:
36
+ # st.session_state.temperature = 0.7
37
+ # def on_change_temperatures():
38
+ # st.session_state.temperature = temperature
39
+ # temperature = st.slider("Temperature", min_value=0.1, max_value=1.5, value=0.6, step=0.05, on_change=on_change_temperatures)
40
+ # st.markdown("_High temperature means that results are more random_")
41
+
42
+ # if 'text' not in st.session_state:
43
+ # st.session_state.text = ""
44
+ # st_text_area = st.text_area('Text to generate the title for', value=st.session_state.text, height=500)
45
+
46
+ # def generate_title():
47
+ # st.session_state.text = st_text_area
48
+
49
+ # # tokenize text
50
+ # inputs = ["summarize: " + st_text_area]
51
+ # inputs = tokenizer(inputs, return_tensors="pt")
52
+
53
+ # # compute span boundaries
54
+ # num_tokens = len(inputs["input_ids"][0])
55
+ # print(f"Input has {num_tokens} tokens")
56
+ # max_input_length = 500
57
+ # num_spans = math.ceil(num_tokens / max_input_length)
58
+ # print(f"Input has {num_spans} spans")
59
+ # overlap = math.ceil((num_spans * max_input_length - num_tokens) / max(num_spans - 1, 1))
60
+ # spans_boundaries = []
61
+ # start = 0
62
+ # for i in range(num_spans):
63
+ # spans_boundaries.append([start + max_input_length * i, start + max_input_length * (i + 1)])
64
+ # start -= overlap
65
+ # print(f"Span boundaries are {spans_boundaries}")
66
+ # spans_boundaries_selected = []
67
+ # j = 0
68
+ # for _ in range(num_titles):
69
+ # spans_boundaries_selected.append(spans_boundaries[j])
70
+ # j += 1
71
+ # if j == len(spans_boundaries):
72
+ # j = 0
73
+ # print(f"Selected span boundaries are {spans_boundaries_selected}")
74
+
75
+ # # transform input with spans
76
+ # tensor_ids = [inputs["input_ids"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries_selected]
77
+ # tensor_masks = [inputs["attention_mask"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries_selected]
78
+
79
+ # inputs = {
80
+ # "input_ids": torch.stack(tensor_ids),
81
+ # "attention_mask": torch.stack(tensor_masks)
82
+ # }
83
+
84
+ # # compute predictions
85
+ # outputs = model.generate(**inputs, do_sample=True, temperature=temperature)
86
+ # decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
87
+ # predicted_titles = [nltk.sent_tokenize(decoded_output.strip())[0] for decoded_output in decoded_outputs]
88
+
89
+ # st.session_state.titles = predicted_titles
90
+
91
+ # # generate title button
92
+ # st_generate_button = st.button('Generate title', on_click=generate_title)
93
+
94
+ # # title generation labels
95
+ # if 'titles' not in st.session_state:
96
+ # st.session_state.titles = []
97
+
98
+ # if len(st.session_state.titles) > 0:
99
+ # with st.container():
100
+ # st.subheader("Generated titles")
101
+ # for title in st.session_state.titles:
102
+ # st.markdown("__" + title + "__")
103
+
104
+
105
  import streamlit as st
106
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
107
  import nltk
 
151
  st.session_state.text = st_text_area
152
 
153
  # tokenize text
154
+ inputs = tokenizer.encode("summarize: " + st_text_area, return_tensors="pt", max_length=max_input_length, truncation=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
 
156
  # compute predictions
157
+ outputs = model.generate(inputs, num_return_sequences=num_titles, temperature=temperature, max_length=150)
158
+ decoded_outputs = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
159
  predicted_titles = [nltk.sent_tokenize(decoded_output.strip())[0] for decoded_output in decoded_outputs]
160
 
161
  st.session_state.titles = predicted_titles
 
171
  with st.container():
172
  st.subheader("Generated titles")
173
  for title in st.session_state.titles:
174
+ st.markdown("__" + title + "__")