momo commited on
Commit
13f3081
·
1 Parent(s): e14e709
Files changed (1) hide show
  1. app.py +58 -0
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ baseline_interactive.py
3
+ """
4
+ import gradio as gr
5
+ import torch
6
+ from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
7
+ from transformers import pipeline
8
+
9
+ model_name = "momo/rsp-sum"
10
+ model = MBartForConditionalGeneration.from_pretrained(model_name)
11
+ tokenizer = MBart50TokenizerFast.from_pretrained(model_name, src_lang="ko_KR", tgt_lang="ko_KR")
12
+
13
+ # prefix = "translate English to German: "
14
+
15
+ def summarization(model_name, text):
16
+ summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
17
+ summarizer("An apple a day, keeps the doctor away", min_length=50, max_length=150)
18
+
19
+ for result in summarizer(text):
20
+ print(result)
21
+ return result
22
+
23
+ if __name__ == '__main__':
24
+
25
+ #Create a gradio app with a button that calls predict()
26
+ app = gr.Interface(
27
+ fn=summarization,
28
+ inputs='text',
29
+ outputs='text',
30
+ title="News Summary Generator",
31
+ description="News Summary Generator"
32
+ )
33
+ app.launch()
34
+
35
+ # with torch.no_grad():
36
+ # while True:
37
+ # t = input("\nDocument: ")
38
+ # tokens = tokenizer(
39
+ # t,
40
+ # return_tensors="pt",
41
+ # truncation=True,
42
+ # padding=True,
43
+ # max_length=600
44
+ # )
45
+
46
+ # input_ids = tokens.input_ids.cuda()
47
+ # attention_mask = tokens.attention_mask.cuda()
48
+
49
+ # sample_output = model.generate(
50
+ # input_ids,
51
+ # max_length=150,
52
+ # num_beams=5,
53
+ # early_stopping=True,
54
+ # no_repeat_ngram_size=8,
55
+ # )
56
+ # # print("token:" + str(input_ids.detach().cpu()))
57
+ # # print("token:" + tokenizer.convert_ids_to_tokens(str(input_ids.detach().cpu())))
58
+ # print("Summary: " + tokenizer.decode(sample_output[0], skip_special_tokens=True))