Spaces:
Sleeping
Sleeping
""" | |
python interactive.py | |
""" | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from transformers import TextClassificationPipeline | |
import gradio as gr | |
# global var | |
MODEL_NAME = 'momo/KcELECTRA-base_Hate_speech_Privacy_Detection' | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForSequenceClassification.from_pretrained( | |
MODEL_NAME, | |
num_labels= 15, | |
problem_type="multi_label_classification" | |
) | |
MODEL_BUF = { | |
"name": MODEL_NAME, | |
"tokenizer": tokenizer, | |
"model": model, | |
} | |
def change_model_name(name): | |
MODEL_BUF["name"] = name | |
MODEL_BUF["tokenizer"] = AutoTokenizer.from_pretrained(name) | |
MODEL_BUF["model"] = AutoModelForSequenceClassification.from_pretrained(name) | |
def predict(model_name, text): | |
if model_name != MODEL_BUF["name"]: | |
change_model_name(model_name) | |
tokenizer = MODEL_BUF["tokenizer"] | |
model = MODEL_BUF["model"] | |
unsmile_labels = ["์ฌ์ฑ/๊ฐ์กฑ","๋จ์ฑ","์ฑ์์์","์ธ์ข /๊ตญ์ ","์ฐ๋ น","์ง์ญ","์ข ๊ต","๊ธฐํ ํ์ค","์ ํ/์์ค", "clean", '์ด๋ฆ', '์ ํ๋ฒํธ', '์ฃผ์', '๊ณ์ข๋ฒํธ', '์ฃผ๋ฏผ๋ฒํธ'] | |
num_labels = len(unsmile_labels) | |
model.config.id2label = {i: label for i, label in zip(range(num_labels), unsmile_labels)} | |
model.config.label2id = {label: i for i, label in zip(range(num_labels), unsmile_labels)} | |
pipe = TextClassificationPipeline( | |
model = model, | |
tokenizer = tokenizer, | |
return_all_scores=True, | |
function_to_apply='sigmoid' | |
) | |
for result in pipe(text): | |
print(result) | |
return result | |
if __name__ == '__main__': | |
exam1 = '๊ฒฝ๊ธฐ๋ ์ฑ๋จ์ ์์ ๊ตฌ ํํ3๋์ ์ฐ๋ฆฌ ๋๋ค์ผ!' | |
exam2 = '๋ด ํธ๋ํฐ ๋ฒํธ๋ 010-3930-8237 ์ด์ผ!' | |
exam3 = '์ ์ ์ฅ ๋๋ฌด ์ง์ฆ๋๋ค' | |
model_name_list = [ | |
'momo/KcELECTRA-base_Hate_speech_Privacy_Detection', | |
"momo/KcBERT-base_Hate_speech_Privacy_Detection", | |
] | |
#Create a gradio app with a button that calls predict() | |
app = gr.Interface( | |
fn=predict, | |
inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], | |
outputs='text', | |
examples = [ | |
[MODEL_BUF["name"], exam1], | |
[MODEL_BUF["name"], exam2], | |
[MODEL_BUF["name"], exam3] | |
], | |
title="ํ๊ตญ์ด ํ์คํํ, ๊ฐ์ธ์ ๋ณด ํ๋ณ๊ธฐ (Korean Hate Speech and Privacy Detection)", | |
description="Korean Hate Speech and Privacy Detection. \t 15๊ฐ label Detection: ์ฌ์ฑ/๊ฐ์กฑ, ๋จ์ฑ, ์ฑ์์์, ์ธ์ข /๊ตญ์ , ์ฐ๋ น, ์ง์ญ, ์ข ๊ต, ๊ธฐํ ํ์ค, ์ ํ/์์ค, clean, name, number, address, bank, person" | |
) | |
app.launch() |