Spaces:
Sleeping
Sleeping
first commit
Browse files- .gitignore +8 -0
- README.md +4 -1
- app.py +582 -0
- app/__init__.py +0 -0
- app/config.yaml +46 -0
- app/prompt_ADEME.yaml +102 -0
- app/prompt_Loi.yaml +100 -0
- app/prompt_Politique.yaml +100 -0
- app/prompt_Presse.yaml +91 -0
- app/prompt_Science.yaml +95 -0
- app/source/backend/document_store.py +41 -0
- app/source/backend/get_prompts.py +33 -0
- app/source/backend/llm_utils.py +60 -0
- app/source/backend/prompt_utils.py +68 -0
- app/source/frontend/utils.py +119 -0
- assets/style.css +172 -0
- poetry.lock +0 -0
- pyproject.toml +25 -0
- requirements.txt +0 -0
.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
__pycache__/app.cpython-38.pyc
|
3 |
+
__pycache__/app.cpython-39.pyc
|
4 |
+
__pycache__/utils.cpython-38.pyc
|
5 |
+
|
6 |
+
notebooks/
|
7 |
+
*.pyc
|
8 |
+
local_tests/
|
README.md
CHANGED
@@ -7,6 +7,9 @@ sdk: gradio
|
|
7 |
sdk_version: 4.36.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
7 |
sdk_version: 4.36.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
hf_oauth: true
|
11 |
---
|
12 |
|
13 |
+
# Spinoza Project
|
14 |
+
|
15 |
+
WIP
|
app.py
ADDED
@@ -0,0 +1,582 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import yaml
|
3 |
+
import logging
|
4 |
+
import gradio as gr
|
5 |
+
from langchain.prompts.chat import ChatPromptTemplate
|
6 |
+
from huggingface_hub import hf_hub_download, whoami
|
7 |
+
from app.source.backend.llm_utils import get_llm
|
8 |
+
from app.source.backend.document_store import pickle_to_document_store
|
9 |
+
from app.source.backend.get_prompts import get_qa_prompts
|
10 |
+
from app.source.frontend.utils import (
|
11 |
+
make_html_source,
|
12 |
+
make_html_presse_source,
|
13 |
+
init_env,
|
14 |
+
)
|
15 |
+
from app.source.backend.prompt_utils import to_chat_instruction, SpecialTokens
|
16 |
+
|
17 |
+
init_env()
|
18 |
+
|
19 |
+
with open("./app/config.yaml") as f:
|
20 |
+
config = yaml.full_load(f)
|
21 |
+
|
22 |
+
prompts = {}
|
23 |
+
for source in config["prompt_naming"]:
|
24 |
+
with open(f"./app/prompt_{source}.yaml") as f:
|
25 |
+
prompts[source] = yaml.full_load(f)
|
26 |
+
|
27 |
+
## Building LLM
|
28 |
+
print("Building LLM")
|
29 |
+
model = "gpt35turbo"
|
30 |
+
llm = get_llm()
|
31 |
+
|
32 |
+
## Loading_tools
|
33 |
+
print("Loading Databases")
|
34 |
+
qdrants = {
|
35 |
+
tab: pickle_to_document_store(
|
36 |
+
hf_hub_download(
|
37 |
+
repo_id="momenaca/spinoza-dbs",
|
38 |
+
filename=f"database_{tab}.pickle",
|
39 |
+
token=True,
|
40 |
+
repo_type="dataset",
|
41 |
+
)
|
42 |
+
)
|
43 |
+
for tab in config["prompt_naming"]
|
44 |
+
}
|
45 |
+
|
46 |
+
## Load Prompts
|
47 |
+
print("Loading Prompts")
|
48 |
+
chat_qa_prompts, chat_reformulation_prompts, chat_summarize_memory_prompts = {}, {}, {}
|
49 |
+
for source, prompt in prompts.items():
|
50 |
+
chat_qa_prompt, chat_reformulation_prompt = get_qa_prompts(config, prompt)
|
51 |
+
chat_qa_prompts[source] = chat_qa_prompt
|
52 |
+
chat_reformulation_prompts[source] = chat_reformulation_prompt
|
53 |
+
# chat_summarize_memory_prompts[source] = chat_summarize_memory_prompt
|
54 |
+
|
55 |
+
with open("./assets/style.css", "r") as f:
|
56 |
+
css = f.read()
|
57 |
+
|
58 |
+
|
59 |
+
def update_tabs(outil, visible_tabs):
|
60 |
+
visible_tabs = outil
|
61 |
+
return visible_tabs
|
62 |
+
|
63 |
+
|
64 |
+
special_tokens = SpecialTokens(config)
|
65 |
+
|
66 |
+
synthesis_template = """You are a factual journalist that summarize the secialized awnsers from thechnical sources.
|
67 |
+
|
68 |
+
Based on the folowing question:
|
69 |
+
{question}
|
70 |
+
|
71 |
+
And the following expert answer:
|
72 |
+
{answers}
|
73 |
+
|
74 |
+
Answer the question, in French.
|
75 |
+
When using legal awnsers, keep tracking of the name of the articles.
|
76 |
+
When using ADEME awnsers, name the sources that are mainly used.
|
77 |
+
List the different element mentionned, and highlight the agreement points between the sources, as well as the contradictions or differences.
|
78 |
+
Generate the answer as markdown, with an aerated layout, and headlines in bold
|
79 |
+
Start by a general summary, agreement and contracdiction, and then go into detail without paraphasing the experts awnsers.
|
80 |
+
"""
|
81 |
+
|
82 |
+
synthesis_prompt = to_chat_instruction(synthesis_template, special_tokens)
|
83 |
+
synthesis_prompt_template = ChatPromptTemplate.from_messages([synthesis_prompt])
|
84 |
+
|
85 |
+
|
86 |
+
def zip_longest_fill(*args, fillvalue=None):
|
87 |
+
# zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
|
88 |
+
iterators = [iter(it) for it in args]
|
89 |
+
num_active = len(iterators)
|
90 |
+
if not num_active:
|
91 |
+
return
|
92 |
+
|
93 |
+
cond = True
|
94 |
+
fillvalues = [None] * len(iterators)
|
95 |
+
while cond:
|
96 |
+
values = []
|
97 |
+
for i, it in enumerate(iterators):
|
98 |
+
try:
|
99 |
+
value = next(it)
|
100 |
+
except StopIteration:
|
101 |
+
value = fillvalues[i]
|
102 |
+
values.append(value)
|
103 |
+
|
104 |
+
new_cond = False
|
105 |
+
for i, elt in enumerate(values):
|
106 |
+
if elt != fillvalues[i]:
|
107 |
+
new_cond = True
|
108 |
+
cond = new_cond
|
109 |
+
|
110 |
+
fillvalues = values.copy()
|
111 |
+
yield tuple(values)
|
112 |
+
|
113 |
+
|
114 |
+
def build_data_dict(config):
|
115 |
+
data_dict = {}
|
116 |
+
for tab in config["tabs"]:
|
117 |
+
data_dict[tab] = {
|
118 |
+
"tab": {
|
119 |
+
"init_value": tab,
|
120 |
+
"component": None,
|
121 |
+
"elem_id": "tab",
|
122 |
+
},
|
123 |
+
"description": {
|
124 |
+
"init_value": config["tabs"][tab],
|
125 |
+
"component": None,
|
126 |
+
"elem_id": "desc",
|
127 |
+
},
|
128 |
+
"question": {
|
129 |
+
"init_value": None,
|
130 |
+
"component": None,
|
131 |
+
"elem_id": "question",
|
132 |
+
},
|
133 |
+
"answer": {
|
134 |
+
"init_value": None,
|
135 |
+
"component": None,
|
136 |
+
"elem_id": "answer",
|
137 |
+
},
|
138 |
+
"sources": {
|
139 |
+
"init_value": None,
|
140 |
+
"component": None,
|
141 |
+
"elem_id": "src",
|
142 |
+
},
|
143 |
+
}
|
144 |
+
return data_dict
|
145 |
+
|
146 |
+
|
147 |
+
def init_gradio(data, config=config):
|
148 |
+
for t in data:
|
149 |
+
data[t]["tab"]["component"] = gr.Tab(
|
150 |
+
data[t]["tab"]["init_value"], elem_id="tab"
|
151 |
+
)
|
152 |
+
with data[t]["tab"]["component"]:
|
153 |
+
for fields in data[t]:
|
154 |
+
if fields == "question":
|
155 |
+
data[t][fields]["component"] = gr.Textbox(
|
156 |
+
elem_id=data[t][fields]["elem_id"],
|
157 |
+
show_label=False,
|
158 |
+
interactive=True,
|
159 |
+
placeholder="",
|
160 |
+
)
|
161 |
+
# elif fields == "answer":
|
162 |
+
# data[t][fields]["component"] = gr.Textbox(
|
163 |
+
# elem_id=data[t][fields]["elem_id"],
|
164 |
+
# show_label=True,
|
165 |
+
# interactive=True,
|
166 |
+
# placeholder="",
|
167 |
+
# show_copy_button=True
|
168 |
+
# )
|
169 |
+
elif fields != "tab":
|
170 |
+
data[t][fields]["component"] = gr.Markdown(
|
171 |
+
data[t][fields]["init_value"],
|
172 |
+
elem_id=data[t][fields]["elem_id"],
|
173 |
+
)
|
174 |
+
# data[t][fields]["component"] = gr.Textbox(
|
175 |
+
# value=data[t][fields]["init_value"],
|
176 |
+
# elem_id=data[t][fields]["elem_id"],
|
177 |
+
# show_label=True,
|
178 |
+
# interactive=False,
|
179 |
+
# show_copy_button=True,
|
180 |
+
# )
|
181 |
+
return data
|
182 |
+
|
183 |
+
|
184 |
+
def add_warning():
|
185 |
+
return "*Les éléments cochés ont commencé à être généré dans les onglets spécifiques, la synthèse ne sera disponible qu'après la mise à disposition de ces derniers.*"
|
186 |
+
|
187 |
+
|
188 |
+
def format_question(question):
|
189 |
+
return f"{question}" # ###
|
190 |
+
|
191 |
+
|
192 |
+
def parse_question(question):
|
193 |
+
x = question.replace("<p>", "").replace("</p>\n", "")
|
194 |
+
if "### " in x:
|
195 |
+
return x.split("### ")[1]
|
196 |
+
return x
|
197 |
+
|
198 |
+
|
199 |
+
def reformulate(outils, question, tab, config=config):
|
200 |
+
if tab in outils:
|
201 |
+
return llm.stream(
|
202 |
+
chat_reformulation_prompts[config["source_mapping"][tab]],
|
203 |
+
{"question": parse_question(question)},
|
204 |
+
)
|
205 |
+
else:
|
206 |
+
return iter([None] * 5)
|
207 |
+
|
208 |
+
|
209 |
+
def reformulate_single_question(outils, question, tab, config=config):
|
210 |
+
for elt in reformulate(outils, question, tab, config=config):
|
211 |
+
time.sleep(0.02)
|
212 |
+
yield elt
|
213 |
+
|
214 |
+
|
215 |
+
def reformulate_questions(outils, question, config=config):
|
216 |
+
for elt in zip_longest_fill(
|
217 |
+
*[reformulate(outils, question, tab, config=config) for tab in config["tabs"]]
|
218 |
+
):
|
219 |
+
time.sleep(0.02)
|
220 |
+
yield elt
|
221 |
+
|
222 |
+
|
223 |
+
def add_question(question):
|
224 |
+
return question
|
225 |
+
|
226 |
+
|
227 |
+
def answer(question, source, outils, tab, config=config):
|
228 |
+
if tab in outils:
|
229 |
+
if len(source) < 10:
|
230 |
+
return iter(["Aucune source trouvée, veuillez reformuler votre question"])
|
231 |
+
else:
|
232 |
+
|
233 |
+
return llm.stream(
|
234 |
+
chat_qa_prompts[config["source_mapping"][tab]],
|
235 |
+
{
|
236 |
+
"question": parse_question(question),
|
237 |
+
"sources": source.replace("<p>", "").replace("</p>\n", ""),
|
238 |
+
},
|
239 |
+
)
|
240 |
+
else:
|
241 |
+
return iter([None] * 5)
|
242 |
+
|
243 |
+
|
244 |
+
def answer_single_question(outils, source, question, tab, config=config):
|
245 |
+
for elt in answer(question, source, outils, tab, config=config):
|
246 |
+
time.sleep(0.02)
|
247 |
+
yield elt
|
248 |
+
|
249 |
+
|
250 |
+
def answer_questions(outils, *questions_sources, config=config):
|
251 |
+
|
252 |
+
questions = [elt for elt in questions_sources[: len(questions_sources) // 2]]
|
253 |
+
sources = [elt for elt in questions_sources[len(questions_sources) // 2 :]]
|
254 |
+
|
255 |
+
for elt in zip_longest_fill(
|
256 |
+
*[
|
257 |
+
answer(question, source, outils, tab, config=config)
|
258 |
+
for question, source, tab in zip(questions, sources, config["tabs"])
|
259 |
+
]
|
260 |
+
):
|
261 |
+
time.sleep(0.02)
|
262 |
+
yield elt
|
263 |
+
|
264 |
+
|
265 |
+
def get_source_link(metadata):
|
266 |
+
return metadata["file_url"] + f"#page={metadata['content_page_number'] + 1}"
|
267 |
+
|
268 |
+
|
269 |
+
def get_button(i, tag):
|
270 |
+
return f"""<button id="btn_{tag}_{i}" type="button" style="margin: 0; display: inline; align="right">[{i}]</button>"""
|
271 |
+
|
272 |
+
|
273 |
+
def get_html_sources(buttons, cards):
|
274 |
+
return f"""
|
275 |
+
<p style="margin: 0; display: inline;"><strong><br>Sources utilisées : </strong></p>
|
276 |
+
{buttons}
|
277 |
+
{cards}
|
278 |
+
"""
|
279 |
+
|
280 |
+
|
281 |
+
def get_sources(outils, question, tab, qdrants=qdrants, config=config):
|
282 |
+
k = config["num_document_retrieved"]
|
283 |
+
min_similarity = config["min_similarity"]
|
284 |
+
if tab in outils:
|
285 |
+
sources = qdrants[
|
286 |
+
config["source_mapping"][tab]
|
287 |
+
].similarity_search_with_relevance_scores(
|
288 |
+
config["query_preprompt"]
|
289 |
+
+ question.replace("<p>", "").replace("</p>\n", ""),
|
290 |
+
k=k,
|
291 |
+
# filter=get_qdrant_filters(filters),
|
292 |
+
)
|
293 |
+
sources = [(doc, score) for doc, score in sources if score >= min_similarity]
|
294 |
+
|
295 |
+
buttons_ids = list(range(len(sources)))
|
296 |
+
buttons = " ".join(
|
297 |
+
[get_button(i, tab) for i, source in zip(buttons_ids, sources)]
|
298 |
+
)
|
299 |
+
formated = (
|
300 |
+
"\n\n".join(
|
301 |
+
[
|
302 |
+
make_html_presse_source(source[0], i, tab, source[1], config)
|
303 |
+
for i, source in zip(buttons_ids, sources)
|
304 |
+
]
|
305 |
+
)
|
306 |
+
if tab == "Presse"
|
307 |
+
else "\n\n".join(
|
308 |
+
[
|
309 |
+
make_html_source(source[0], i, tab, source[1], config)
|
310 |
+
for i, source in zip(buttons_ids, sources)
|
311 |
+
]
|
312 |
+
)
|
313 |
+
)
|
314 |
+
formated = get_html_sources(buttons, formated) if sources else ""
|
315 |
+
text = "\n\n".join(
|
316 |
+
[
|
317 |
+
f"Doc {str(i)} with source type {elt[0].metadata.get('file_source_type')}:\n"
|
318 |
+
+ elt[0].page_content
|
319 |
+
for i, elt in enumerate(sources)
|
320 |
+
]
|
321 |
+
)
|
322 |
+
return str(formated), str(text) # formated_sources, text_sources
|
323 |
+
else:
|
324 |
+
return "", ""
|
325 |
+
|
326 |
+
|
327 |
+
def retrieve_sources(outils, *questions, qdrants=qdrants, config=config):
|
328 |
+
results = [
|
329 |
+
get_sources(outils, question, tab, qdrants, config)
|
330 |
+
for question, tab in zip(questions, config["tabs"])
|
331 |
+
]
|
332 |
+
formated_sources = [source[0] for source in results]
|
333 |
+
text_sources = [source[1] for source in results]
|
334 |
+
return tuple(formated_sources + text_sources)
|
335 |
+
|
336 |
+
|
337 |
+
def get_experts(outils, *answers, config=config):
|
338 |
+
return "\n\n".join(
|
339 |
+
[
|
340 |
+
f"{tab}\n{answers[i]}"
|
341 |
+
for i, tab in enumerate(config["tabs"])
|
342 |
+
if (tab in outils)
|
343 |
+
]
|
344 |
+
)
|
345 |
+
|
346 |
+
|
347 |
+
def get_synthesis(outils, question, *answers, config=config):
|
348 |
+
answer = []
|
349 |
+
for i, tab in enumerate(config["tabs"]):
|
350 |
+
if (tab in outils) & (len(str(answers[i])) >= 100):
|
351 |
+
answer.append(
|
352 |
+
f"{tab}\n{answers[i]}".replace("<p>", "").replace("</p>\n", "")
|
353 |
+
)
|
354 |
+
|
355 |
+
if len(answer) == 0:
|
356 |
+
return "Aucune source n'a pu être identifiée pour répondre, veuillez modifier votre question"
|
357 |
+
else:
|
358 |
+
for elt in llm.stream(
|
359 |
+
synthesis_prompt_template,
|
360 |
+
{
|
361 |
+
"question": question.replace("<p>", "").replace("</p>\n", ""),
|
362 |
+
"answers": "\n\n".join(answer),
|
363 |
+
},
|
364 |
+
):
|
365 |
+
time.sleep(0.01)
|
366 |
+
yield elt
|
367 |
+
|
368 |
+
|
369 |
+
def get_listener():
|
370 |
+
return """
|
371 |
+
function my_func_body() {
|
372 |
+
const body = document.querySelector("body");
|
373 |
+
body.addEventListener("click", e => {
|
374 |
+
console.log(e)
|
375 |
+
const sourceId = "btn_" + e.target.id.split("_")[1] + "_" + e.target.id.split("_")[2] + "_source"
|
376 |
+
console.log(sourceId)
|
377 |
+
if (document.getElementById(sourceId).style.display === "none") {
|
378 |
+
document.getElementById(sourceId).style.display = "";
|
379 |
+
} else {
|
380 |
+
document.getElementById(sourceId).style.display = "none";
|
381 |
+
}
|
382 |
+
}
|
383 |
+
)}
|
384 |
+
"""
|
385 |
+
|
386 |
+
|
387 |
+
def get_source_template(buttons, divs_source):
|
388 |
+
return """
|
389 |
+
<div class="source">
|
390 |
+
<p style="margin: 0; display: inline;"><strong><br>Sources utilisées :</strong></p>
|
391 |
+
{buttons}
|
392 |
+
{divs_source}
|
393 |
+
</div>
|
394 |
+
</div>
|
395 |
+
"""
|
396 |
+
|
397 |
+
|
398 |
+
def activate_questions(outils, *textboxes, config=config):
|
399 |
+
activated_textboxes = []
|
400 |
+
for i, tab in enumerate(config["tabs"]):
|
401 |
+
if tab in outils:
|
402 |
+
activated_textboxes.append(
|
403 |
+
gr.Textbox(
|
404 |
+
show_label=False,
|
405 |
+
interactive=True,
|
406 |
+
placeholder="Sélectionnez cet outil et posez une question sur l'onglet de synthèse",
|
407 |
+
)
|
408 |
+
)
|
409 |
+
|
410 |
+
else:
|
411 |
+
activated_textboxes.append(
|
412 |
+
gr.Textbox(
|
413 |
+
show_label=False,
|
414 |
+
interactive=False,
|
415 |
+
placeholder="Sélectionnez cet outil et posez une question sur l'onglet de synthèse",
|
416 |
+
)
|
417 |
+
)
|
418 |
+
return activated_textboxes
|
419 |
+
|
420 |
+
|
421 |
+
def empty():
|
422 |
+
return ""
|
423 |
+
|
424 |
+
|
425 |
+
def empty_none():
|
426 |
+
return None
|
427 |
+
|
428 |
+
|
429 |
+
theme = gr.themes.Soft(
|
430 |
+
primary_hue="sky",
|
431 |
+
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
|
432 |
+
)
|
433 |
+
|
434 |
+
logo_rsf = config["logo_rsf"]
|
435 |
+
logo_ap = config["logo_ap"]
|
436 |
+
|
437 |
+
data = build_data_dict(config)
|
438 |
+
|
439 |
+
|
440 |
+
def update_visible(oauth_token: gr.OAuthToken | None):
|
441 |
+
if oauth_token is None:
|
442 |
+
return {
|
443 |
+
bloc_1: gr.update(visible=True),
|
444 |
+
bloc_2: gr.update(visible=False),
|
445 |
+
bloc_3: gr.update(visible=False),
|
446 |
+
}
|
447 |
+
|
448 |
+
org_names = [org["name"] for org in whoami(oauth_token.token)["orgs"]]
|
449 |
+
|
450 |
+
if "SpinozaProject" in org_names: # logged in group
|
451 |
+
return {
|
452 |
+
bloc_1: gr.update(visible=False),
|
453 |
+
bloc_2: gr.update(visible=True),
|
454 |
+
bloc_3: gr.update(visible=False),
|
455 |
+
}
|
456 |
+
|
457 |
+
else: # logged but not in group
|
458 |
+
return {
|
459 |
+
bloc_1: gr.update(visible=False),
|
460 |
+
bloc_2: gr.update(visible=False),
|
461 |
+
bloc_3: gr.update(visible=True),
|
462 |
+
}
|
463 |
+
|
464 |
+
|
465 |
+
with gr.Blocks(
|
466 |
+
title=f"🔍{config['demo_name']}",
|
467 |
+
css=css,
|
468 |
+
js=get_listener(),
|
469 |
+
theme=theme,
|
470 |
+
) as demo:
|
471 |
+
gr.LoginButton()
|
472 |
+
|
473 |
+
with gr.Column() as bloc_1:
|
474 |
+
textbox_1 = gr.Textbox("You are not logged to Hugging Face !", show_label=False)
|
475 |
+
|
476 |
+
with gr.Column(visible=False) as bloc_3:
|
477 |
+
textbox_3 = gr.Textbox(
|
478 |
+
"You are not part of the Spinoza Project, ask access here : https://huggingface.co/organizations/TestSpinoza/share/kmwhyFXasNnGfkBrKzNAPgnlRrxyVOSSMx"
|
479 |
+
)
|
480 |
+
|
481 |
+
with gr.Column(visible=False) as bloc_2:
|
482 |
+
gr.HTML(
|
483 |
+
f"""<div class="row_logo">
|
484 |
+
<img src={logo_rsf} alt="logo RSF" style="float:left; width:120px; height:70px">
|
485 |
+
<img src={logo_ap} alt="logo AP" style="width:120px; height:70px">
|
486 |
+
</div>"""
|
487 |
+
)
|
488 |
+
|
489 |
+
text_sources = {elt: gr.State("") for elt in config["tabs"]}
|
490 |
+
tab_states = {elt: gr.State(elt) for elt in config["tabs"]}
|
491 |
+
with gr.Row():
|
492 |
+
with gr.Column(scale=3):
|
493 |
+
outils = gr.CheckboxGroup(
|
494 |
+
choices=list(config["tabs"].keys()),
|
495 |
+
value=list(config["tabs"].keys()),
|
496 |
+
type="value",
|
497 |
+
label="Choisir les bases de données à interroger",
|
498 |
+
)
|
499 |
+
with gr.Column(scale=1):
|
500 |
+
submit_btn = gr.Button(
|
501 |
+
"Relancer la Synthèse", variant="primary", elem_id="synthese_btn"
|
502 |
+
)
|
503 |
+
|
504 |
+
# Synthesis tab
|
505 |
+
synthesis_tab = gr.Tab("Synthesis", elem_id="tab")
|
506 |
+
with synthesis_tab:
|
507 |
+
question = gr.Textbox(
|
508 |
+
show_label=True,
|
509 |
+
label="Posez une question à Spinoza",
|
510 |
+
placeholder="Quelle est votre question ?",
|
511 |
+
)
|
512 |
+
md_question = gr.Markdown(None, visible=False)
|
513 |
+
warning = gr.Markdown(None, elem_id="warn")
|
514 |
+
synthesis = gr.Markdown(None, elem_id="synthesis")
|
515 |
+
|
516 |
+
data = init_gradio(data)
|
517 |
+
(
|
518 |
+
question.submit(add_question, [question], [md_question])
|
519 |
+
.then(add_warning, [], [warning])
|
520 |
+
.then(empty, [], [synthesis])
|
521 |
+
.then(
|
522 |
+
reformulate_questions,
|
523 |
+
[outils, md_question],
|
524 |
+
[data[tab]["question"]["component"] for tab in config["tabs"]],
|
525 |
+
)
|
526 |
+
.then(
|
527 |
+
retrieve_sources,
|
528 |
+
[outils]
|
529 |
+
+ [data[tab]["question"]["component"] for tab in config["tabs"]],
|
530 |
+
[data[tab]["sources"]["component"] for tab in config["tabs"]]
|
531 |
+
+ [text_sources[tab] for tab in config["tabs"]],
|
532 |
+
)
|
533 |
+
.then(
|
534 |
+
answer_questions,
|
535 |
+
[outils]
|
536 |
+
+ [data[tab]["question"]["component"] for tab in config["tabs"]]
|
537 |
+
+ [text_sources[tab] for tab in config["tabs"]],
|
538 |
+
[data[tab]["answer"]["component"] for tab in config["tabs"]],
|
539 |
+
)
|
540 |
+
.then(
|
541 |
+
get_synthesis,
|
542 |
+
[outils, md_question]
|
543 |
+
+ [data[tab]["answer"]["component"] for tab in config["tabs"]],
|
544 |
+
[synthesis],
|
545 |
+
)
|
546 |
+
)
|
547 |
+
|
548 |
+
for tab in config["tabs"]:
|
549 |
+
(
|
550 |
+
data[tab]["question"]["component"]
|
551 |
+
.submit(empty, [], [data[tab]["sources"]["component"]])
|
552 |
+
.then(empty, [], [text_sources[tab]])
|
553 |
+
.then(empty, [], [data[tab]["answer"]["component"]])
|
554 |
+
.then(
|
555 |
+
get_sources,
|
556 |
+
[outils, data[tab]["question"]["component"], tab_states[tab]],
|
557 |
+
[data[tab]["sources"]["component"], text_sources[tab]],
|
558 |
+
)
|
559 |
+
.then(
|
560 |
+
answer_single_question,
|
561 |
+
[
|
562 |
+
outils,
|
563 |
+
text_sources[tab],
|
564 |
+
data[tab]["question"]["component"],
|
565 |
+
tab_states[tab],
|
566 |
+
],
|
567 |
+
[data[tab]["answer"]["component"]],
|
568 |
+
)
|
569 |
+
)
|
570 |
+
|
571 |
+
(
|
572 |
+
submit_btn.click(empty, [], [synthesis]).then(
|
573 |
+
get_synthesis,
|
574 |
+
[outils, md_question]
|
575 |
+
+ [data[tab]["answer"]["component"] for tab in config["tabs"]],
|
576 |
+
[synthesis],
|
577 |
+
)
|
578 |
+
)
|
579 |
+
demo.load(update_visible, inputs=None, outputs=[bloc_1, bloc_2, bloc_3])
|
580 |
+
|
581 |
+
if __name__ == "__main__":
|
582 |
+
demo.queue().launch(share=True, debug=True)
|
app/__init__.py
ADDED
File without changes
|
app/config.yaml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
demo_name: Spinoza Q&A
|
2 |
+
tabs:
|
3 |
+
GIEC et IPBES: "*Outil dédié aux rapports du GIEC et de l'IPBES.*"
|
4 |
+
Textes Juridiques: "*Outil dédié aux codes Français modifiés par la loi climat (21/73).*"
|
5 |
+
Documents Stratégiques: "*Outil dédié aux données centrées sur le plan politique (SNBC).*"
|
6 |
+
ADEME: "*Outil dédié aux données issues de l'ADEME et nous avons sélectionnés notamment différentes catégories de rapports:*\n
|
7 |
+
* *Les guides mis à disposition de la population*\n
|
8 |
+
* *Les rapport d'expériences sur des nouvelles technologies*\n
|
9 |
+
* *Des études et recherches sur des impacts locaux*\n
|
10 |
+
* *Des documents institutionnels (analyses demandées par la France & rapports d'activité)*\n
|
11 |
+
* *Les plans de transition sectoriels pour les secteurs industriels les plus émetteurs : (verre, papier, ciment, acier, aluminium, chimie, sucre)*"
|
12 |
+
# Presse: "*Outil dédié aux données fournies par Aday concernant la presse.*"
|
13 |
+
|
14 |
+
logo_rsf:
|
15 |
+
""
|
16 |
+
|
17 |
+
logo_ap:
|
18 |
+
""
|
19 |
+
|
20 |
+
source_mapping:
|
21 |
+
GIEC et IPBES: "Science"
|
22 |
+
Textes Juridiques: "Loi"
|
23 |
+
Documents Stratégiques: "Politique"
|
24 |
+
ADEME: "ADEME"
|
25 |
+
# Presse: "Presse"
|
26 |
+
|
27 |
+
prompt_naming:
|
28 |
+
Science: "Science"
|
29 |
+
Loi: "Loi"
|
30 |
+
Politique: "Politique"
|
31 |
+
ADEME: "ADEME"
|
32 |
+
# Presse: "Presse"
|
33 |
+
|
34 |
+
|
35 |
+
database_index_path: './app/data/database_tab_placeholder.pickle'
|
36 |
+
query_preprompt: 'query: '
|
37 |
+
passage_preprompt: 'passage: '
|
38 |
+
embedding_model: "intfloat/multilingual-e5-base"
|
39 |
+
num_document_retrieved: 5
|
40 |
+
min_similarity: 0.05
|
41 |
+
|
42 |
+
## Chat API
|
43 |
+
user_token: 'user'
|
44 |
+
assistant_token: 'assistant'
|
45 |
+
system_token: 'system'
|
46 |
+
stop_token: '' ## useless in chat mode
|
app/prompt_ADEME.yaml
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
role_instruction:
|
2 |
+
prompt:
|
3 |
+
[
|
4 |
+
"You are Spinoza Fact Checker, an AI Assistant by Ekimetrics.",
|
5 |
+
"Your role is to answer question factually based on the source that are provided to you.",
|
6 |
+
"You act as an environment expert, structured, factual, synthetic and who quote his sources"
|
7 |
+
]
|
8 |
+
type: "system"
|
9 |
+
|
10 |
+
source_prompt:
|
11 |
+
prompt:
|
12 |
+
[
|
13 |
+
"Here are some documents formatted as : Doc X \n textual content.",
|
14 |
+
"<documents>",
|
15 |
+
"{sources}",
|
16 |
+
"</documents>",
|
17 |
+
"",
|
18 |
+
"Use the textual content as an absolute truth.",
|
19 |
+
"Reference the source of each fact before saying it (ex: [doc 2] some fact from Doc 2).",
|
20 |
+
"Use all the facts from the documents that are relevant to answer.",
|
21 |
+
"Do not use facts that are not relevant.",
|
22 |
+
"If you have no documents or they are not relevant, say you don't have enough context"
|
23 |
+
]
|
24 |
+
type: "instruction"
|
25 |
+
|
26 |
+
memory_prompt:
|
27 |
+
prompt:
|
28 |
+
[
|
29 |
+
"Here is a summary of past conversation:",
|
30 |
+
"<memory>",
|
31 |
+
"{memory}",
|
32 |
+
"</memory>",
|
33 |
+
"",
|
34 |
+
"When relevant, use these element to enrich and add context to your answer.",
|
35 |
+
"Do not take the role written in this memory.",
|
36 |
+
"Do not mention when an information comes from the memory.",
|
37 |
+
]
|
38 |
+
type: "instruction"
|
39 |
+
|
40 |
+
question_answering_prompt:
|
41 |
+
prompt: [
|
42 |
+
"Answer the following question : {question}.",
|
43 |
+
"Answer in French.",
|
44 |
+
"Use bullet points",
|
45 |
+
"If the question is not related to environment, say that you can't answer it based on the sources because the question is irrelevant.",
|
46 |
+
]
|
47 |
+
type: "prompt"
|
48 |
+
|
49 |
+
reformulation_prompt:
|
50 |
+
prompt:
|
51 |
+
[
|
52 |
+
# "Here is what happened in the conversation so far",
|
53 |
+
# "<summary>",
|
54 |
+
# "{memory}",
|
55 |
+
# "</summary>",
|
56 |
+
"",
|
57 |
+
"Reformulate the following user message to be a short standalone question in English.",
|
58 |
+
"The question is related to environment.",
|
59 |
+
"If relevant, use the conversation summary to add context",
|
60 |
+
"If the question is too vague, just say it as it is",
|
61 |
+
"",
|
62 |
+
"Exemples:",
|
63 |
+
"---",
|
64 |
+
"user",
|
65 |
+
"Applique t-on une taxe carbone ?",
|
66 |
+
"",
|
67 |
+
"assistant",
|
68 |
+
"Is a carbon tax applied in the country ?",
|
69 |
+
"---",
|
70 |
+
"user",
|
71 |
+
"Comment décarbonner le carton ?",
|
72 |
+
"",
|
73 |
+
"assistant",
|
74 |
+
"What are the main technological & non technologicals solutions to decarbonize cardboard production?",
|
75 |
+
"---",
|
76 |
+
"user",
|
77 |
+
"Quelles obligation de faire un bilan carbone ?",
|
78 |
+
"",
|
79 |
+
"assistant",
|
80 |
+
"What are the obligations to conduct a greenhouse gas emissions assessment?",
|
81 |
+
"---",
|
82 |
+
"user",
|
83 |
+
"Qui finance la transition ecologique ?",
|
84 |
+
"",
|
85 |
+
"assistant",
|
86 |
+
"What are the investments related to environnemental transition in France ?",
|
87 |
+
"---",
|
88 |
+
"user",
|
89 |
+
"{question}",
|
90 |
+
"",
|
91 |
+
]
|
92 |
+
type: prompt
|
93 |
+
|
94 |
+
summarize_memory_prompt:
|
95 |
+
prompt:
|
96 |
+
[
|
97 |
+
"Summarize the following exchange as concisely as possible to be used by a language model",
|
98 |
+
"<conversation>",
|
99 |
+
"{memory}",
|
100 |
+
"</conversation>",
|
101 |
+
]
|
102 |
+
type: prompt
|
app/prompt_Loi.yaml
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
role_instruction:
|
2 |
+
prompt:
|
3 |
+
[
|
4 |
+
"You are Spinoza Fact Checker, an AI Assistant by Ekimetrics.",
|
5 |
+
"Your role is to answer question factually based on the source that are provided to you.",
|
6 |
+
"You act as a legal expert, structured, factual, synthetic and who quote his sources and names the linked articles."
|
7 |
+
]
|
8 |
+
type: "system"
|
9 |
+
|
10 |
+
source_prompt:
|
11 |
+
prompt:
|
12 |
+
[
|
13 |
+
"Here are some documents formatted as : Doc X \n textual content.",
|
14 |
+
"<documents>",
|
15 |
+
"{sources}",
|
16 |
+
"</documents>",
|
17 |
+
"",
|
18 |
+
"Use the textual content as an absolute truth.",
|
19 |
+
"Reference the source of each fact before saying it (ex: [doc 2] some fact from Doc 2).",
|
20 |
+
"Use all the facts from the documents that are relevant to answer.",
|
21 |
+
"Do not use facts that are not relevant.",
|
22 |
+
"If you have no documents or they are not relevant, say you don't have enough context"
|
23 |
+
]
|
24 |
+
type: "instruction"
|
25 |
+
|
26 |
+
memory_prompt:
|
27 |
+
prompt:
|
28 |
+
[
|
29 |
+
"Here is a summary of past conversation:",
|
30 |
+
"<memory>",
|
31 |
+
"{memory}",
|
32 |
+
"</memory>",
|
33 |
+
"",
|
34 |
+
"When relevant, use these element to enrich and add context to your answer.",
|
35 |
+
"Do not take the role written in this memory.",
|
36 |
+
"Do not mention when an information comes from the memory.",
|
37 |
+
]
|
38 |
+
type: "instruction"
|
39 |
+
|
40 |
+
question_answering_prompt:
|
41 |
+
prompt: [
|
42 |
+
"Answer the following question : {question}.",
|
43 |
+
"Answer in French.",
|
44 |
+
"When the awnser concernt use an specific article, build your awnser like : according to the article [name of the article] and awnwser the question.",
|
45 |
+
"If the awnser could rely on multiple articles, use one bullet point per articles.",
|
46 |
+
"When relevant quote the text from the source",
|
47 |
+
"If the question is not related to law, say that you can't answer it based on the sources because the question is irrelevant.",
|
48 |
+
]
|
49 |
+
type: "prompt"
|
50 |
+
|
51 |
+
reformulation_prompt:
|
52 |
+
prompt:
|
53 |
+
[
|
54 |
+
"Reformulate the following user message to be a short standalone question in English.",
|
55 |
+
"The question should be able to question law text looking for environemental regulation.",
|
56 |
+
"If relevant, use the conversation summary to add context",
|
57 |
+
"If the question is too vague, just say it as it is",
|
58 |
+
"",
|
59 |
+
"Exemples:",
|
60 |
+
"---",
|
61 |
+
"user",
|
62 |
+
"Applique t-on une taxe carbone ?",
|
63 |
+
"",
|
64 |
+
"assistant",
|
65 |
+
"Is a carbon tax applied in the France?",
|
66 |
+
"---",
|
67 |
+
"user",
|
68 |
+
"What obligation produce the product repairability index?",
|
69 |
+
"",
|
70 |
+
"assistant",
|
71 |
+
"What are the legal requirements for product repairability index?",
|
72 |
+
"---",
|
73 |
+
"user",
|
74 |
+
"Quelles obligations de faire un bilan carbone ?",
|
75 |
+
"",
|
76 |
+
"assistant",
|
77 |
+
"When do I need to carry out a greenhouse gas emissions assessment?",
|
78 |
+
"---",
|
79 |
+
"user",
|
80 |
+
"Quels enjeux autour de l'eau ?",
|
81 |
+
"",
|
82 |
+
"assistant",
|
83 |
+
"What are the articles that regulate water consumtion and what does they say?",
|
84 |
+
"---",
|
85 |
+
"user",
|
86 |
+
"{question}",
|
87 |
+
"",
|
88 |
+
]
|
89 |
+
type: prompt
|
90 |
+
|
91 |
+
summarize_memory_prompt:
|
92 |
+
prompt:
|
93 |
+
[
|
94 |
+
"Summarize the following exchange as concisely as possible to be used by a language model",
|
95 |
+
"Begining of exchange",
|
96 |
+
"{memory}",
|
97 |
+
"End of exchange",
|
98 |
+
"",
|
99 |
+
]
|
100 |
+
type: prompt
|
app/prompt_Politique.yaml
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
role_instruction:
|
2 |
+
prompt:
|
3 |
+
[
|
4 |
+
"You are Spinoza Fact Checker, an AI Assistant by Ekimetrics.",
|
5 |
+
"Your role is to answer question factually based on the source that are provided to you.",
|
6 |
+
"You act as a legal expert, structured, factual, synthetic and who quote his sources and names the linked articles."
|
7 |
+
]
|
8 |
+
type: "system"
|
9 |
+
|
10 |
+
source_prompt:
|
11 |
+
prompt:
|
12 |
+
[
|
13 |
+
"Here are some documents formatted as : Doc X \n textual content.",
|
14 |
+
"<documents>",
|
15 |
+
"{sources}",
|
16 |
+
"</documents>",
|
17 |
+
"",
|
18 |
+
"Use the textual content as an absolute truth.",
|
19 |
+
"Reference the source of each fact before saying it (ex: [doc 2] some fact from Doc 2).",
|
20 |
+
"Use all the facts from the documents that are relevant to answer.",
|
21 |
+
"Do not use facts that are not relevant.",
|
22 |
+
"If you have no documents or they are not relevant, say you don't have enough context"
|
23 |
+
]
|
24 |
+
type: "instruction"
|
25 |
+
|
26 |
+
memory_prompt:
|
27 |
+
prompt:
|
28 |
+
[
|
29 |
+
"Here is a summary of past conversation:",
|
30 |
+
"<memory>",
|
31 |
+
"{memory}",
|
32 |
+
"</memory>",
|
33 |
+
"",
|
34 |
+
"When relevant, use these element to enrich and add context to your answer.",
|
35 |
+
"Do not take the role written in this memory.",
|
36 |
+
"Do not mention when an information comes from the memory.",
|
37 |
+
]
|
38 |
+
type: "instruction"
|
39 |
+
|
40 |
+
question_answering_prompt:
|
41 |
+
prompt: [
|
42 |
+
"Answer the following question : {question}.",
|
43 |
+
"Answer in French.",
|
44 |
+
"When the awnser concernt use an specific article, build your awnser like : according to the article [name of the article] and awnwser the question.",
|
45 |
+
"If the awnser could rely on multiple articles, use one bullet point per articles.",
|
46 |
+
"When relevant quote the text from the source",
|
47 |
+
"If the question is not related to law, say that you can't answer it based on the sources because the question is irrelevant.",
|
48 |
+
]
|
49 |
+
type: "prompt"
|
50 |
+
|
51 |
+
reformulation_prompt:
|
52 |
+
prompt:
|
53 |
+
[
|
54 |
+
"Reformulate the following user message to be a short standalone question in English.",
|
55 |
+
"The question should be able to question law text looking for environemental regulation.",
|
56 |
+
"If relevant, use the conversation summary to add context",
|
57 |
+
"If the question is too vague, just say it as it is",
|
58 |
+
"",
|
59 |
+
"Exemples:",
|
60 |
+
"---",
|
61 |
+
"user",
|
62 |
+
"Applique t-on une taxe carbone ?",
|
63 |
+
"",
|
64 |
+
"assistant",
|
65 |
+
"Is a carbon tax applied in the France?",
|
66 |
+
"---",
|
67 |
+
"user",
|
68 |
+
"What obligation produce the product repairability index?",
|
69 |
+
"",
|
70 |
+
"assistant",
|
71 |
+
"What are the legal requirements for product repairability index?",
|
72 |
+
"---",
|
73 |
+
"user",
|
74 |
+
"Quelles obligations de faire un bilan carbone ?",
|
75 |
+
"",
|
76 |
+
"assistant",
|
77 |
+
"When do I need to carry out a greenhouse gas emissions assessment?",
|
78 |
+
"---",
|
79 |
+
"user",
|
80 |
+
"Quels enjeux autour de l'eau ?",
|
81 |
+
"",
|
82 |
+
"assistant",
|
83 |
+
"What are the articles that regulate water consumtion and what does they say?",
|
84 |
+
"---",
|
85 |
+
"user",
|
86 |
+
"{question}",
|
87 |
+
"",
|
88 |
+
]
|
89 |
+
type: prompt
|
90 |
+
|
91 |
+
summarize_memory_prompt:
|
92 |
+
prompt:
|
93 |
+
[
|
94 |
+
"Summarize the following exchange as concisely as possible to be used by a language model",
|
95 |
+
"Begining of exchange",
|
96 |
+
"{memory}",
|
97 |
+
"End of exchange",
|
98 |
+
"",
|
99 |
+
]
|
100 |
+
type: prompt
|
app/prompt_Presse.yaml
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
role_instruction:
|
2 |
+
prompt:
|
3 |
+
[
|
4 |
+
"You are Spinoza Fact Checker, an AI Assistant by Ekimetrics.",
|
5 |
+
"Your role is to answer question factually based on the source that are provided to you.",
|
6 |
+
"All sources provided are comming from press releases and might not be considered as absolute truth",
|
7 |
+
"You act as an environment expert, structured, factual, synthetic and who quote his sources"
|
8 |
+
]
|
9 |
+
type: "system"
|
10 |
+
|
11 |
+
source_prompt:
|
12 |
+
prompt:
|
13 |
+
[
|
14 |
+
"Here are some documents formatted as : Doc X \n textual content.",
|
15 |
+
"<documents>",
|
16 |
+
"{sources}",
|
17 |
+
"</documents>",
|
18 |
+
"",
|
19 |
+
"Use the textual content as an absolute truth.",
|
20 |
+
"Reference the source of each fact before saying it (ex: [doc 2] some fact from Doc 2).",
|
21 |
+
"Use all the facts from the documents that are relevant to answer.",
|
22 |
+
"Do not use facts that are not relevant.",
|
23 |
+
"If you have no documents or they are not relevant, say you don't have enough context"
|
24 |
+
]
|
25 |
+
type: "instruction"
|
26 |
+
|
27 |
+
memory_prompt:
|
28 |
+
prompt:
|
29 |
+
[
|
30 |
+
"Here is a summary of past conversation:",
|
31 |
+
"<memory>",
|
32 |
+
"{memory}",
|
33 |
+
"</memory>",
|
34 |
+
"",
|
35 |
+
"When relevant, use these element to enrich and add context to your answer.",
|
36 |
+
"Do not take the role written in this memory.",
|
37 |
+
"Do not mention when an information comes from the memory.",
|
38 |
+
]
|
39 |
+
type: "instruction"
|
40 |
+
|
41 |
+
question_answering_prompt:
|
42 |
+
prompt: [
|
43 |
+
"Answer the following question : {question}.",
|
44 |
+
"Answer in French.",
|
45 |
+
"Use bullet points",
|
46 |
+
"If the question is not related to environment, say that you can't answer it based on the sources because the question is irrelevant.",
|
47 |
+
]
|
48 |
+
type: "prompt"
|
49 |
+
|
50 |
+
reformulation_prompt:
|
51 |
+
prompt:
|
52 |
+
[
|
53 |
+
# "Here is what happened in the conversation so far",
|
54 |
+
# "<summary>",
|
55 |
+
# "{memory}",
|
56 |
+
# "</summary>",
|
57 |
+
"",
|
58 |
+
"Reformulate the following user message to be a short standalone question in French.",
|
59 |
+
"The question is related to environment.",
|
60 |
+
"If relevant, use the conversation summary to add context",
|
61 |
+
"If the question is too vague, just say it as it is",
|
62 |
+
"",
|
63 |
+
"Exemples:",
|
64 |
+
"---",
|
65 |
+
"user",
|
66 |
+
"Applique t-on une taxe carbone ?",
|
67 |
+
"",
|
68 |
+
"assistant",
|
69 |
+
"Comment le sujet de la taxe carbone est il traité dans le corpus ?",
|
70 |
+
"---",
|
71 |
+
"user",
|
72 |
+
"Quelles obligation de faire un bilan carbone ?",
|
73 |
+
"",
|
74 |
+
"assistant",
|
75 |
+
"Quelles sont les obligation qui imposent de faire un bilan carbone",
|
76 |
+
"---",
|
77 |
+
"user",
|
78 |
+
"{question}",
|
79 |
+
"",
|
80 |
+
]
|
81 |
+
type: prompt
|
82 |
+
|
83 |
+
summarize_memory_prompt:
|
84 |
+
prompt:
|
85 |
+
[
|
86 |
+
"Summarize the following exchange as concisely as possible to be used by a language model",
|
87 |
+
"<conversation>",
|
88 |
+
"{memory}",
|
89 |
+
"</conversation>",
|
90 |
+
]
|
91 |
+
type: prompt
|
app/prompt_Science.yaml
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
role_instruction:
|
2 |
+
prompt:
|
3 |
+
[
|
4 |
+
"You are Spinoza Fact Checker, an AI Assistant by Ekimetrics.",
|
5 |
+
"Your role is to answer question factually based on the source that are provided to you.",
|
6 |
+
"You act as a scientific expert, structured, factual, synthetic and who quote his sources"
|
7 |
+
]
|
8 |
+
type: "system"
|
9 |
+
|
10 |
+
source_prompt:
|
11 |
+
prompt:
|
12 |
+
[
|
13 |
+
"Here are some documents formatted as : Doc X \n textual content.",
|
14 |
+
"<documents>",
|
15 |
+
"{sources}",
|
16 |
+
"</documents>",
|
17 |
+
"",
|
18 |
+
"Use the textual content as an absolute truth.",
|
19 |
+
"Reference the source of each fact before saying it (ex: [doc 2] some fact from Doc 2).",
|
20 |
+
"Use all the facts from the documents that are relevant to answer.",
|
21 |
+
"Do not use facts that are not relevant.",
|
22 |
+
"If you have no documents : <documents>\n\n</documents> or they are not relevant, say you don't have enough context"
|
23 |
+
]
|
24 |
+
type: "instruction"
|
25 |
+
|
26 |
+
memory_prompt:
|
27 |
+
prompt:
|
28 |
+
[
|
29 |
+
"Here is a summary of past conversation:",
|
30 |
+
"<memory>",
|
31 |
+
"{memory}",
|
32 |
+
"</memory>",
|
33 |
+
"",
|
34 |
+
"When relevant, use these element to enrich and add context to your answer.",
|
35 |
+
"Do not take the role written in this memory.",
|
36 |
+
"Do not mention when an information comes from the memory.",
|
37 |
+
]
|
38 |
+
type: "instruction"
|
39 |
+
|
40 |
+
question_answering_prompt:
|
41 |
+
prompt: [
|
42 |
+
"Answer the following question : {question}.",
|
43 |
+
"Answer in French.",
|
44 |
+
"Use bullet points",
|
45 |
+
]
|
46 |
+
type: "prompt"
|
47 |
+
|
48 |
+
reformulation_prompt:
|
49 |
+
prompt:
|
50 |
+
[
|
51 |
+
# "Here is what happened in the conversation so far",
|
52 |
+
# "<summary>",
|
53 |
+
# "{memory}",
|
54 |
+
# "</summary>",
|
55 |
+
# "",
|
56 |
+
"Reformulate the following user message to be a short standalone question in English.",
|
57 |
+
"The question is related to science.",
|
58 |
+
"If relevant, use the conversation summary to add context",
|
59 |
+
"If the question is too vague, just say it as it is",
|
60 |
+
"",
|
61 |
+
"Exemples:",
|
62 |
+
"---",
|
63 |
+
"user",
|
64 |
+
"La technologie nous sauvera-t-elle ?",
|
65 |
+
"",
|
66 |
+
"assistant",
|
67 |
+
"Can technology help humanity mitigate the effects of climate change?",
|
68 |
+
"---",
|
69 |
+
"user",
|
70 |
+
"what are our reserves in fossil fuel?",
|
71 |
+
"",
|
72 |
+
"assistant",
|
73 |
+
"What are the current reserves of fossil fuels and how long will they last?",
|
74 |
+
"---",
|
75 |
+
"user",
|
76 |
+
"what are the main causes of climate change?",
|
77 |
+
"",
|
78 |
+
"assistant",
|
79 |
+
"What are the main causes of climate change in the last century?",
|
80 |
+
"---",
|
81 |
+
"user",
|
82 |
+
"{question}",
|
83 |
+
"",
|
84 |
+
]
|
85 |
+
type: prompt
|
86 |
+
|
87 |
+
summarize_memory_prompt:
|
88 |
+
prompt:
|
89 |
+
[
|
90 |
+
"Summarize the following exchange as concisely as possible to be used by a language model",
|
91 |
+
"<conversation>",
|
92 |
+
"{memory}",
|
93 |
+
"</conversation>",
|
94 |
+
]
|
95 |
+
type: prompt
|
app/source/backend/document_store.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from qdrant_client.http import models
|
2 |
+
import pickle as pickle
|
3 |
+
import torch
|
4 |
+
import io
|
5 |
+
|
6 |
+
device_str = "cuda:0" if torch.cuda.is_available() else "cpu"
|
7 |
+
device = torch.device(device_str)
|
8 |
+
|
9 |
+
|
10 |
+
class Device_Unpickler(pickle.Unpickler):
|
11 |
+
|
12 |
+
def find_class(self, module, name):
|
13 |
+
if module == "torch.storage" and name == "_load_from_bytes":
|
14 |
+
return lambda b: torch.load(io.BytesIO(b), map_location=device_str)
|
15 |
+
else:
|
16 |
+
return super().find_class(module, name)
|
17 |
+
|
18 |
+
|
19 |
+
def pickle_to_document_store(path):
|
20 |
+
with open(path, "rb") as f:
|
21 |
+
document_store = Device_Unpickler(f).load()
|
22 |
+
document_store.embeddings.encode_kwargs["device"] = device_str
|
23 |
+
return document_store
|
24 |
+
|
25 |
+
|
26 |
+
def get_qdrant_filters(filter_dict: dict):
|
27 |
+
"""Build a Qdrant filter based on a filter dict.
|
28 |
+
|
29 |
+
Filter dict must use metadata fields and be formated like:
|
30 |
+
|
31 |
+
filter_dict = {'file_name':['file1', 'file2'],'sub_type':['text']}
|
32 |
+
"""
|
33 |
+
return models.Filter(
|
34 |
+
must=[
|
35 |
+
models.FieldCondition(
|
36 |
+
key=f"metadata.{field}",
|
37 |
+
match=models.MatchAny(any=filter_dict[field]),
|
38 |
+
)
|
39 |
+
for field in filter_dict
|
40 |
+
]
|
41 |
+
)
|
app/source/backend/get_prompts.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from app.source.backend.prompt_utils import SpecialTokens, make_chat_prompt
|
2 |
+
from langchain.prompts.chat import ChatPromptTemplate
|
3 |
+
|
4 |
+
|
5 |
+
def get_qa_prompts(config, prompts):
|
6 |
+
special_tokens = SpecialTokens(config)
|
7 |
+
role_instruction = make_chat_prompt(prompts["role_instruction"], special_tokens)
|
8 |
+
source_prompt = make_chat_prompt(prompts["source_prompt"], special_tokens)
|
9 |
+
# memory_prompt=make_chat_prompt(prompts['memory_prompt'], special_tokens)
|
10 |
+
question_answering_prompt = make_chat_prompt(
|
11 |
+
prompts["question_answering_prompt"], special_tokens
|
12 |
+
)
|
13 |
+
reformulation_prompt = make_chat_prompt(
|
14 |
+
prompts["reformulation_prompt"], special_tokens
|
15 |
+
)
|
16 |
+
summarize_memory_prompt = make_chat_prompt(
|
17 |
+
prompts["summarize_memory_prompt"], special_tokens
|
18 |
+
)
|
19 |
+
|
20 |
+
chat_qa_prompt = ChatPromptTemplate.from_messages(
|
21 |
+
[
|
22 |
+
role_instruction,
|
23 |
+
source_prompt,
|
24 |
+
# memory_prompt,
|
25 |
+
question_answering_prompt,
|
26 |
+
]
|
27 |
+
)
|
28 |
+
chat_reformulation_prompt = ChatPromptTemplate.from_messages([reformulation_prompt])
|
29 |
+
# chat_summarize_memory_prompt = ChatPromptTemplate.from_messages([summarize_memory_prompt])
|
30 |
+
return (
|
31 |
+
chat_qa_prompt,
|
32 |
+
chat_reformulation_prompt,
|
33 |
+
) # , chat_summarize_memory_prompt
|
app/source/backend/llm_utils.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_openai import AzureChatOpenAI
|
2 |
+
from msal import ConfidentialClientApplication
|
3 |
+
import os
|
4 |
+
|
5 |
+
|
6 |
+
class LLM:
|
7 |
+
def __init__(self, llm):
|
8 |
+
self.llm = llm
|
9 |
+
self.callbacks = []
|
10 |
+
|
11 |
+
def stream(self, prompt, prompt_arguments):
|
12 |
+
self.llm.streaming = True
|
13 |
+
streamed_content = self.llm.stream(prompt.format_messages(**prompt_arguments))
|
14 |
+
output = ""
|
15 |
+
for op in streamed_content:
|
16 |
+
output += op.content
|
17 |
+
yield output
|
18 |
+
|
19 |
+
def get_prediction(self, prompt, prompt_arguments):
|
20 |
+
self.llm.callbacks = self.callbacks
|
21 |
+
return self.llm.predict_messages(
|
22 |
+
prompt.format_messages(**prompt_arguments)
|
23 |
+
).content
|
24 |
+
|
25 |
+
async def get_aprediction(self, prompt, prompt_arguments):
|
26 |
+
self.llm.callbacks = self.callbacks
|
27 |
+
prediction = await self.llm.apredict_messages(
|
28 |
+
prompt.format_messages(**prompt_arguments)
|
29 |
+
)
|
30 |
+
return prediction
|
31 |
+
|
32 |
+
async def get_apredictions(self, prompts, prompts_arguments):
|
33 |
+
self.llm.callbacks = self.callbacks
|
34 |
+
predictions = []
|
35 |
+
for prompt_, prompt_args_ in zip(prompts.keys(), prompts_arguments):
|
36 |
+
prediction = await self.llm.apredict_messages(
|
37 |
+
prompts[prompt_].format_messages(**prompt_args_)
|
38 |
+
)
|
39 |
+
predictions.append(prediction.content)
|
40 |
+
return predictions
|
41 |
+
|
42 |
+
|
43 |
+
def get_token() -> str | None:
|
44 |
+
app = ConfidentialClientApplication(
|
45 |
+
client_id=os.getenv("CLIENT_ID"),
|
46 |
+
client_credential=os.getenv("CLIENT_SECRET"),
|
47 |
+
authority=f"https://login.microsoftonline.com/{os.getenv('TENANT_ID')}",
|
48 |
+
)
|
49 |
+
result = app.acquire_token_for_client(scopes=[os.getenv("SCOPE")])
|
50 |
+
if result is not None:
|
51 |
+
return result["access_token"]
|
52 |
+
|
53 |
+
|
54 |
+
def get_llm():
|
55 |
+
os.environ["OPENAI_API_KEY"] = get_token()
|
56 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = (
|
57 |
+
f"{os.getenv('OPENAI_API_ENDPOINT')}{os.getenv('DEPLOYMENT_ID')}/chat/completions?api-version={os.getenv('OPENAI_API_VERSION')}"
|
58 |
+
)
|
59 |
+
|
60 |
+
return LLM(AzureChatOpenAI())
|
app/source/backend/prompt_utils.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.prompts.chat import ChatMessagePromptTemplate
|
2 |
+
|
3 |
+
|
4 |
+
class SpecialTokens:
|
5 |
+
def __init__(self, config):
|
6 |
+
self.user_token = config["user_token"]
|
7 |
+
self.assistant_token = config["assistant_token"]
|
8 |
+
self.system_token = config["system_token"]
|
9 |
+
self.stop_token = config["stop_token"]
|
10 |
+
|
11 |
+
|
12 |
+
def to_instruction(query, special_tokens):
|
13 |
+
return special_tokens.user_token + query + special_tokens.stop_token
|
14 |
+
|
15 |
+
|
16 |
+
def to_prompt(query, special_tokens):
|
17 |
+
return (
|
18 |
+
special_tokens.user_token
|
19 |
+
+ query
|
20 |
+
+ special_tokens.stop_token
|
21 |
+
+ special_tokens.assistant_token
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def to_system(query, special_tokens):
|
26 |
+
return special_tokens.system_token + query + special_tokens.stop_token
|
27 |
+
|
28 |
+
|
29 |
+
def make_prompt(prompt, special_tokens):
|
30 |
+
prompt_type = prompt["type"]
|
31 |
+
if prompt_type == "system":
|
32 |
+
return to_system("\n".join(prompt["prompt"]), special_tokens)
|
33 |
+
elif prompt_type == "instruction":
|
34 |
+
return to_instruction("\n".join(prompt["prompt"]), special_tokens)
|
35 |
+
elif prompt_type == "prompt":
|
36 |
+
return to_prompt("\n".join(prompt["prompt"]), special_tokens)
|
37 |
+
else:
|
38 |
+
return "Invalid prompt type, please check your config"
|
39 |
+
|
40 |
+
|
41 |
+
def to_chat_instruction(query, special_tokens):
|
42 |
+
return ChatMessagePromptTemplate.from_template(
|
43 |
+
query, role=special_tokens.user_token
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
def to_chat_system(query, special_tokens):
|
48 |
+
return ChatMessagePromptTemplate.from_template(
|
49 |
+
query, role=special_tokens.system_token
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
def to_chat_prompt(query, special_tokens):
|
54 |
+
return ChatMessagePromptTemplate.from_template(
|
55 |
+
query, role=special_tokens.user_token
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
def make_chat_prompt(prompt, special_tokens):
|
60 |
+
prompt_type = prompt["type"]
|
61 |
+
if prompt_type == "system":
|
62 |
+
return to_chat_system("\n".join(prompt["prompt"]), special_tokens)
|
63 |
+
elif prompt_type == "instruction":
|
64 |
+
return to_chat_instruction("\n".join(prompt["prompt"]), special_tokens)
|
65 |
+
elif prompt_type == "prompt":
|
66 |
+
return to_chat_prompt("\n".join(prompt["prompt"]), special_tokens)
|
67 |
+
else:
|
68 |
+
return "Invalid prompt type, please check your config"
|
app/source/frontend/utils.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from queue import SimpleQueue
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
4 |
+
|
5 |
+
job_done = object() # signals the processing is done
|
6 |
+
|
7 |
+
|
8 |
+
class StreamingGradioCallbackHandler(BaseCallbackHandler):
|
9 |
+
"""Callback handler for streaming. Only works with LLMs that support streaming."""
|
10 |
+
|
11 |
+
def __init__(self, q):
|
12 |
+
self.q = q
|
13 |
+
|
14 |
+
def on_llm_start(self, serialized, prompts, **kwargs) -> None:
|
15 |
+
"""Run when LLM starts running."""
|
16 |
+
while not self.q.empty():
|
17 |
+
try:
|
18 |
+
self.q.get(block=False)
|
19 |
+
except SimpleQueue.empty:
|
20 |
+
continue
|
21 |
+
|
22 |
+
def on_llm_new_token(self, token, **kwargs) -> None:
|
23 |
+
"""Run on new LLM token. Only available when streaming is enabled."""
|
24 |
+
self.q.put(token)
|
25 |
+
|
26 |
+
def on_llm_end(self, response, **kwargs) -> None:
|
27 |
+
"""Run when LLM ends running."""
|
28 |
+
self.q.put(job_done)
|
29 |
+
|
30 |
+
def on_llm_error(self, error, **kwargs) -> None:
|
31 |
+
"""Run when LLM errors."""
|
32 |
+
self.q.put(job_done)
|
33 |
+
|
34 |
+
|
35 |
+
def add_gradio_streaming(llm):
|
36 |
+
q = SimpleQueue()
|
37 |
+
job_done = object() # signals the processing is done
|
38 |
+
llm.callbacks = [StreamingGradioCallbackHandler(q)]
|
39 |
+
return llm, q
|
40 |
+
|
41 |
+
|
42 |
+
def gradio_stream(llm, prompt):
|
43 |
+
thread = Thread(target=llm.predict, kwargs={"text": prompt})
|
44 |
+
thread.start()
|
45 |
+
text = ""
|
46 |
+
while True:
|
47 |
+
next_token = q.get(block=True) # Blocks until an input is available
|
48 |
+
if next_token is job_done:
|
49 |
+
break
|
50 |
+
text += next_token
|
51 |
+
time.sleep(0.03)
|
52 |
+
yield text
|
53 |
+
thread.join()
|
54 |
+
|
55 |
+
|
56 |
+
def get_source_link(metadata):
|
57 |
+
return metadata["file_url"] + f"#page={metadata['content_page_number'] + 1}"
|
58 |
+
|
59 |
+
|
60 |
+
def make_html_presse_source(source, i, tag, score, config):
|
61 |
+
meta = source.metadata
|
62 |
+
return f"""
|
63 |
+
<div class="card" id="btn_{tag}_{i}_source" style="display:none;">
|
64 |
+
<div class="card-content">
|
65 |
+
<div class="card-content-column-1">
|
66 |
+
<p><strong>Titre :</strong> {meta['file_title']}</p>
|
67 |
+
<p><strong>Auteur/s :</strong> {meta['file_source_type']}</p>
|
68 |
+
<p><strong>Date :</strong> {meta['file_date_publishing']}</p>
|
69 |
+
</div>
|
70 |
+
<div class="card-content-column-2">
|
71 |
+
<p><strong>Paragraphe id :</strong> {source.page_content.replace(config["passage_preprompt"], "")}</p>
|
72 |
+
</div>
|
73 |
+
</div>
|
74 |
+
<div class="card-footer">
|
75 |
+
<span>[{i}]</span>
|
76 |
+
<span>Relevance Score : {round(100*score,1)}%</span>
|
77 |
+
</div>
|
78 |
+
</div>
|
79 |
+
"""
|
80 |
+
|
81 |
+
|
82 |
+
def make_html_source(source, i, tag, score, config):
|
83 |
+
meta = source.metadata
|
84 |
+
return f"""
|
85 |
+
<div class="card" id="btn_{tag}_{i}_source" style="display:none;">
|
86 |
+
<div class="card-content">
|
87 |
+
<div class="card-content-column-1">
|
88 |
+
<p><strong>Titre :</strong> {meta['file_title']}</p>
|
89 |
+
<p><strong>Auteur/s :</strong> {meta['file_source_type']}</p>
|
90 |
+
<p><strong>Date :</strong> {meta['file_date_publishing']}</p>
|
91 |
+
</div>
|
92 |
+
<div class="card-content-column-2">
|
93 |
+
<p><strong>Paragraphe id :</strong> {source.page_content.replace(config["passage_preprompt"], "")}</p>
|
94 |
+
</div>
|
95 |
+
</div>
|
96 |
+
<div class="card-footer">
|
97 |
+
<span>[{i}]</span>
|
98 |
+
<span><a href="{get_source_link(meta)}" target="_blank">Lien source</a></span>
|
99 |
+
<span>Page {meta['content_page_number'] + 1}</span>
|
100 |
+
<span>Relevance Score : {round(100*score,1)}%</span>
|
101 |
+
</div>
|
102 |
+
</div>
|
103 |
+
"""
|
104 |
+
|
105 |
+
|
106 |
+
def clear_text_box(textbox):
|
107 |
+
return ""
|
108 |
+
|
109 |
+
|
110 |
+
def add_text(chatbot, text):
|
111 |
+
chatbot = chatbot + [(text, None)]
|
112 |
+
return chatbot, text
|
113 |
+
|
114 |
+
|
115 |
+
def init_env():
|
116 |
+
try:
|
117 |
+
load_dotenv()
|
118 |
+
except:
|
119 |
+
pass
|
assets/style.css
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
:root {
|
2 |
+
--user-image: url('https://ih1.redbubble.net/image.4776899543.6215/st,small,507x507-pad,600x600,f8f8f8.jpg');
|
3 |
+
}
|
4 |
+
|
5 |
+
.warning-box {
|
6 |
+
background-color: #fff3cd;
|
7 |
+
border: 1px solid #ffeeba;
|
8 |
+
border-radius: 4px;
|
9 |
+
padding: 15px 20px;
|
10 |
+
font-size: 14px;
|
11 |
+
color: #856404;
|
12 |
+
display: inline-block;
|
13 |
+
margin-bottom: 15px;
|
14 |
+
}
|
15 |
+
|
16 |
+
.tip-box {
|
17 |
+
background-color: #f0f9ff;
|
18 |
+
border: 1px solid #80d4fa;
|
19 |
+
border-radius: 4px;
|
20 |
+
margin-top:20px;
|
21 |
+
padding: 15px 20px;
|
22 |
+
font-size: 14px;
|
23 |
+
color: #006064;
|
24 |
+
display: inline-block;
|
25 |
+
margin-bottom: 15px;
|
26 |
+
width: auto;
|
27 |
+
}
|
28 |
+
|
29 |
+
.tip-box-title {
|
30 |
+
font-weight: bold;
|
31 |
+
font-size: 14px;
|
32 |
+
margin-bottom: 5px;
|
33 |
+
}
|
34 |
+
|
35 |
+
.light-bulb {
|
36 |
+
display: inline;
|
37 |
+
margin-right: 5px;
|
38 |
+
}
|
39 |
+
|
40 |
+
.gr-box {border-color: #d6c37c}
|
41 |
+
|
42 |
+
#hidden-message{
|
43 |
+
display:none;
|
44 |
+
}
|
45 |
+
|
46 |
+
.message{
|
47 |
+
font-size:14px !important;
|
48 |
+
}
|
49 |
+
|
50 |
+
|
51 |
+
a {
|
52 |
+
text-decoration: none;
|
53 |
+
color: inherit;
|
54 |
+
}
|
55 |
+
|
56 |
+
.card {
|
57 |
+
background-color: white;
|
58 |
+
border-radius: 10px;
|
59 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
60 |
+
overflow: hidden;
|
61 |
+
display: flex;
|
62 |
+
flex-direction: column;
|
63 |
+
margin:20px;
|
64 |
+
}
|
65 |
+
|
66 |
+
.card-content {
|
67 |
+
padding: 20px;
|
68 |
+
}
|
69 |
+
|
70 |
+
.card-content h2 {
|
71 |
+
font-size: 14px !important;
|
72 |
+
font-weight: bold;
|
73 |
+
margin-bottom: 10px;
|
74 |
+
margin-top:0px !important;
|
75 |
+
color:#577b9b!important;;
|
76 |
+
}
|
77 |
+
|
78 |
+
.card-content p {
|
79 |
+
font-size: 12px;
|
80 |
+
margin-bottom: 0;
|
81 |
+
}
|
82 |
+
|
83 |
+
.card-content-column-1 {
|
84 |
+
float: left;
|
85 |
+
width: 20%;
|
86 |
+
}
|
87 |
+
|
88 |
+
.card-content-column-2 {
|
89 |
+
float: left;
|
90 |
+
width: 80%;
|
91 |
+
}
|
92 |
+
|
93 |
+
.card-footer {
|
94 |
+
background-color: #f4f4f4;
|
95 |
+
font-size: 10px;
|
96 |
+
padding: 10px;
|
97 |
+
display: flex;
|
98 |
+
justify-content: space-between;
|
99 |
+
align-items: center;
|
100 |
+
}
|
101 |
+
|
102 |
+
.card-footer span {
|
103 |
+
flex-grow: 1;
|
104 |
+
text-align: left;
|
105 |
+
color: #999 !important;
|
106 |
+
}
|
107 |
+
|
108 |
+
.pdf-link {
|
109 |
+
display: inline-flex;
|
110 |
+
align-items: center;
|
111 |
+
margin-left: auto;
|
112 |
+
text-decoration: none!important;
|
113 |
+
font-size: 14px;
|
114 |
+
}
|
115 |
+
|
116 |
+
.message.user{
|
117 |
+
background-color:#7494b0 !important;
|
118 |
+
border:none;
|
119 |
+
color:white!important;
|
120 |
+
}
|
121 |
+
|
122 |
+
.message.bot{
|
123 |
+
background-color:#f2f2f7 !important;
|
124 |
+
border:none;
|
125 |
+
}
|
126 |
+
|
127 |
+
.gallery-item > div:hover{
|
128 |
+
background-color:#7494b0 !important;
|
129 |
+
color:white!important;
|
130 |
+
}
|
131 |
+
|
132 |
+
.gallery-item:hover{
|
133 |
+
border:#7494b0 !important;
|
134 |
+
}
|
135 |
+
|
136 |
+
.gallery-item > div{
|
137 |
+
background-color:white !important;
|
138 |
+
color:#577b9b!important;
|
139 |
+
}
|
140 |
+
|
141 |
+
.label{
|
142 |
+
color:#577b9b!important;
|
143 |
+
}
|
144 |
+
|
145 |
+
label.selected{
|
146 |
+
background:none !important;
|
147 |
+
}
|
148 |
+
|
149 |
+
.paginate{
|
150 |
+
color:#577b9b!important;
|
151 |
+
}
|
152 |
+
|
153 |
+
|
154 |
+
label > span{
|
155 |
+
background-color:white !important;
|
156 |
+
color:#577b9b!important;
|
157 |
+
}
|
158 |
+
|
159 |
+
/* Pseudo-element for the circularly cropped picture */
|
160 |
+
.message.bot::before {
|
161 |
+
content: '';
|
162 |
+
position: absolute;
|
163 |
+
top: -10px;
|
164 |
+
left: -10px;
|
165 |
+
width: 30px;
|
166 |
+
height: 30px;
|
167 |
+
background-image: var(--user-image);
|
168 |
+
background-size: cover;
|
169 |
+
background-position: center;
|
170 |
+
border-radius: 50%;
|
171 |
+
z-index: 10;
|
172 |
+
}
|
poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "spinoza-project"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = ""
|
5 |
+
authors = ["Miguel Omenaca Muro <miguel.omenacamuro@ekimetrics.com>"]
|
6 |
+
readme = "README.md"
|
7 |
+
package-mode = false
|
8 |
+
|
9 |
+
[tool.poetry.dependencies]
|
10 |
+
python = "^3.10"
|
11 |
+
langchain = "^0.2.5"
|
12 |
+
gradio = {extras = ["oauth"], version = "^4.36.1"}
|
13 |
+
sentence-transformers = "2.2.2"
|
14 |
+
msal = "^1.28.1"
|
15 |
+
langchain-openai = "^0.1.8"
|
16 |
+
qdrant-client = "^1.9.1"
|
17 |
+
loadenv = "^0.1.1"
|
18 |
+
datasets = "^2.20.0"
|
19 |
+
langchain-community = "^0.2.5"
|
20 |
+
transformers = "4.39.0"
|
21 |
+
|
22 |
+
|
23 |
+
[build-system]
|
24 |
+
requires = ["poetry-core"]
|
25 |
+
build-backend = "poetry.core.masonry.api"
|
requirements.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|