Spaces:
Sleeping
Sleeping
molokhovdmitry
commited on
Commit
•
1f47c3b
1
Parent(s):
ecaa557
Move from FastAPI to Streamlit web app
Browse files- .env.example +3 -0
- Dockerfile +1 -1
- requirements.txt +6 -5
- src/__init__.py +0 -0
- src/app.py +367 -0
- src/main.py +0 -54
- src/models.py +0 -10
- src/test_main.py +0 -27
- src/yt_api.py +4 -0
- vm_startup.sh +0 -6
.env.example
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
YT_API_KEY=""
|
2 |
+
PRED_BATCH_SIZE=512
|
3 |
+
MAX_COMMENT_SIZE=300
|
Dockerfile
CHANGED
@@ -5,4 +5,4 @@ RUN python -m pip install --upgrade pip
|
|
5 |
RUN pip install --no-cache-dir -r requirements.txt
|
6 |
COPY . .
|
7 |
EXPOSE 8000
|
8 |
-
CMD ["
|
|
|
5 |
RUN pip install --no-cache-dir -r requirements.txt
|
6 |
COPY . .
|
7 |
EXPOSE 8000
|
8 |
+
CMD ["streamlit", "run", "src/app.py", "--server.port", "8000"]
|
requirements.txt
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
requests
|
2 |
-
|
3 |
-
uvicorn
|
4 |
-
pydantic_settings
|
5 |
torch
|
6 |
torchvision
|
7 |
torchaudio
|
8 |
transformers
|
|
|
9 |
pandas
|
10 |
-
|
11 |
-
|
|
|
|
|
|
1 |
requests
|
2 |
+
python-dotenv
|
|
|
|
|
3 |
torch
|
4 |
torchvision
|
5 |
torchaudio
|
6 |
transformers
|
7 |
+
sentence-transformers
|
8 |
pandas
|
9 |
+
seaborn
|
10 |
+
plotly
|
11 |
+
nbformat
|
12 |
+
streamlit
|
src/__init__.py
DELETED
File without changes
|
src/app.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from transformers import pipeline
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import streamlit as st
|
6 |
+
import pandas as pd
|
7 |
+
import plotly.express as px
|
8 |
+
import plotly.graph_objects as go
|
9 |
+
from plotly.subplots import make_subplots
|
10 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
11 |
+
from sklearn.decomposition import NMF
|
12 |
+
from sklearn.manifold import TSNE
|
13 |
+
|
14 |
+
from yt_api import YouTubeAPI
|
15 |
+
|
16 |
+
|
17 |
+
# Load app settings
|
18 |
+
load_dotenv()
|
19 |
+
YT_API_KEY = os.getenv('YT_API_KEY')
|
20 |
+
MAX_COMMENT_SIZE = int(os.getenv('MAX_COMMENT_SIZE'))
|
21 |
+
PRED_BATCH_SIZE = int(os.getenv('PRED_BATCH_SIZE'))
|
22 |
+
|
23 |
+
|
24 |
+
@st.cache_resource
|
25 |
+
def init_emotions_model():
|
26 |
+
classifier = pipeline(
|
27 |
+
task="text-classification",
|
28 |
+
model="SamLowe/roberta-base-go_emotions",
|
29 |
+
top_k=None)
|
30 |
+
|
31 |
+
return classifier
|
32 |
+
|
33 |
+
|
34 |
+
@st.cache_resource
|
35 |
+
def init_embedding_model():
|
36 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
37 |
+
return model
|
38 |
+
|
39 |
+
|
40 |
+
def predict_emotions(df, clf):
|
41 |
+
"""
|
42 |
+
Predicts emotions for every `text_original` in a DataFrame `df` with a
|
43 |
+
classifier `clf`.
|
44 |
+
Returns a DataFrame with emotion columns.
|
45 |
+
"""
|
46 |
+
# Predict emotions in batches
|
47 |
+
text_list = df['text_original'].to_list()
|
48 |
+
batch_size = PRED_BATCH_SIZE
|
49 |
+
text_batches = [text_list[i:i + batch_size]
|
50 |
+
for i in range(0, len(text_list), batch_size)]
|
51 |
+
preds = [comment_emotions
|
52 |
+
for text_batch in text_batches
|
53 |
+
for comment_emotions in clf(text_batch)]
|
54 |
+
|
55 |
+
# Add predictions to DataFrame
|
56 |
+
preds_df = pd.DataFrame([{emotion['label']: emotion['score']
|
57 |
+
for emotion in pred} for pred in preds])
|
58 |
+
df = pd.concat([df, preds_df], axis=1)
|
59 |
+
|
60 |
+
return df
|
61 |
+
|
62 |
+
|
63 |
+
def emotion_dist_plot(df, emotion_cols):
|
64 |
+
"""
|
65 |
+
Creates an emotion distribution plotly figure from `df` DataFrame
|
66 |
+
and `emotion_cols` and returns it.
|
67 |
+
"""
|
68 |
+
fig = px.bar(df[emotion_cols].sum().sort_values(ascending=False))
|
69 |
+
fig.update_layout(title_text="Emotion Distribution",
|
70 |
+
width=2000)
|
71 |
+
|
72 |
+
return fig
|
73 |
+
|
74 |
+
|
75 |
+
def nmf_plots(df,
|
76 |
+
nmf_components,
|
77 |
+
tfidf_max_features,
|
78 |
+
tfidf_stop_words='english'
|
79 |
+
):
|
80 |
+
"""
|
81 |
+
Converts all `text_original` values of `df` DataFrame to TF-IDF features and
|
82 |
+
performs Non-negative matrix factorization on them.
|
83 |
+
|
84 |
+
Returns a tuple of the modified DataFrame with NMF values and a list of
|
85 |
+
plotly figures (`df`, [plotly figures]).
|
86 |
+
"""
|
87 |
+
# Convert to TF-IDF features
|
88 |
+
vectorizer = TfidfVectorizer(max_features=tfidf_max_features,
|
89 |
+
stop_words=tfidf_stop_words)
|
90 |
+
embeddings = vectorizer.fit_transform(df['text_original'])
|
91 |
+
|
92 |
+
# Get feature_names (words) from the vectorizer
|
93 |
+
feature_names = vectorizer.get_feature_names_out()
|
94 |
+
|
95 |
+
# Perform NMF
|
96 |
+
nmf = NMF(n_components=nmf_components)
|
97 |
+
nmf_embeddings = nmf.fit_transform(embeddings).T
|
98 |
+
topic_cols = [f'topic_{topic_num+1}'
|
99 |
+
for topic_num in range(nmf_components)]
|
100 |
+
|
101 |
+
# Add NMF values to the DataFrame
|
102 |
+
for i, col in enumerate(topic_cols):
|
103 |
+
df[col] = nmf_embeddings[i]
|
104 |
+
|
105 |
+
# Get word values for every topic
|
106 |
+
word_df = pd.DataFrame(
|
107 |
+
nmf.components_.T,
|
108 |
+
columns=topic_cols,
|
109 |
+
index=feature_names
|
110 |
+
)
|
111 |
+
|
112 |
+
# Plot word distributions of each topic
|
113 |
+
topic_words_fig = make_subplots(
|
114 |
+
rows=1, cols=nmf_components,
|
115 |
+
subplot_titles=topic_cols)
|
116 |
+
|
117 |
+
for i, col in enumerate(topic_cols):
|
118 |
+
topic_words = word_df[col].sort_values(ascending=False)
|
119 |
+
top_topic_words = topic_words[:top_words_in_topic]
|
120 |
+
topic_words_fig.add_trace(go.Bar(y=top_topic_words.index,
|
121 |
+
x=top_topic_words.values,
|
122 |
+
orientation='h',
|
123 |
+
base=0),
|
124 |
+
row=1, col=i+1)
|
125 |
+
topic_words_fig.update_layout(title_text="Topic Word Distributions")
|
126 |
+
|
127 |
+
# Plot topic contribution for the dataset
|
128 |
+
for col in topic_cols:
|
129 |
+
df[col + '_cumsum'] = df[col].cumsum()
|
130 |
+
for col in topic_cols:
|
131 |
+
cumsum_sum = df[[col + '_cumsum' for col in topic_cols]].sum(axis=1)
|
132 |
+
df[col + '_percentage'] = df[col + '_cumsum'] / cumsum_sum
|
133 |
+
contributions_fig = stacked_area_plot(
|
134 |
+
x=df['published_at'],
|
135 |
+
y_list=[df[f'topic_{i+1}_percentage'] for i in range(nmf_components)],
|
136 |
+
names=topic_cols)
|
137 |
+
|
138 |
+
return df, [topic_words_fig, contributions_fig]
|
139 |
+
|
140 |
+
|
141 |
+
def tsne_plots(df, encoder, emotion_cols, color_emotion, tsne_perplexity):
|
142 |
+
"""
|
143 |
+
Encodes all `text_original` values of `df` DataFrame with `encoder`,
|
144 |
+
uses t-SNE algorithm for visualization on these embeddings and on
|
145 |
+
predicted emotions if they were predicted.
|
146 |
+
"""
|
147 |
+
# Encode and add embeddings to the DataFrame
|
148 |
+
embeddings = encoder.encode(df['text_original'])
|
149 |
+
embedding_cols = [f'embedding_{i+1}' for i in range(embeddings.shape[1])]
|
150 |
+
df = pd.concat([df, pd.DataFrame(embeddings, columns=embedding_cols)],
|
151 |
+
axis=1)
|
152 |
+
|
153 |
+
# t-SNE
|
154 |
+
TSNE_COMPONENTS = 2
|
155 |
+
tsne = TSNE(
|
156 |
+
n_components=2,
|
157 |
+
perplexity=tsne_perplexity,
|
158 |
+
)
|
159 |
+
|
160 |
+
# Also use predicted emotions
|
161 |
+
if emotion_cols:
|
162 |
+
tsne_cols = embedding_cols + emotion_cols
|
163 |
+
color = color_emotion
|
164 |
+
hover_data = ['first_emotion', 'second_emotion', 'text_original']
|
165 |
+
else:
|
166 |
+
tsne_cols = embedding_cols
|
167 |
+
color = None
|
168 |
+
hover_data = 'text_original'
|
169 |
+
|
170 |
+
tsne_results = tsne.fit_transform(df[tsne_cols])
|
171 |
+
tsne_results = pd.DataFrame(
|
172 |
+
tsne_results,
|
173 |
+
columns=[f'tsne_{i+1}' for i in range(TSNE_COMPONENTS)]
|
174 |
+
)
|
175 |
+
|
176 |
+
df = pd.concat([df, tsne_results], axis=1)
|
177 |
+
|
178 |
+
# 2D Visualization
|
179 |
+
fig2d = px.scatter(
|
180 |
+
df,
|
181 |
+
x='tsne_1',
|
182 |
+
y='tsne_2',
|
183 |
+
color=color,
|
184 |
+
hover_data=hover_data
|
185 |
+
)
|
186 |
+
fig2d.update_layout(
|
187 |
+
title_text="t-SNE Visualization"
|
188 |
+
)
|
189 |
+
|
190 |
+
# 3D Visualization with date as the third axis
|
191 |
+
fig3d = px.scatter_3d(
|
192 |
+
df,
|
193 |
+
x='published_at',
|
194 |
+
y='tsne_1',
|
195 |
+
z='tsne_2',
|
196 |
+
color=color,
|
197 |
+
hover_data=hover_data
|
198 |
+
)
|
199 |
+
fig3d.update_layout(
|
200 |
+
title_text="t-SNE Visualization Over Time"
|
201 |
+
)
|
202 |
+
|
203 |
+
return df, [fig2d, fig3d]
|
204 |
+
|
205 |
+
|
206 |
+
def stacked_area_plot(x, y_list, names):
|
207 |
+
"""Creates plotly stacked area plot. Returns a figure of that plot."""
|
208 |
+
fig = go.Figure()
|
209 |
+
for y, name in zip(y_list, names):
|
210 |
+
fig.add_trace(go.Scatter(
|
211 |
+
x=x, y=y*100,
|
212 |
+
mode='lines',
|
213 |
+
line=dict(width=0.5),
|
214 |
+
stackgroup='one',
|
215 |
+
name=name,
|
216 |
+
))
|
217 |
+
|
218 |
+
fig.update_layout(
|
219 |
+
showlegend=True,
|
220 |
+
xaxis_type='category',
|
221 |
+
yaxis=dict(
|
222 |
+
type='linear',
|
223 |
+
range=[0, 100],
|
224 |
+
ticksuffix='%')
|
225 |
+
)
|
226 |
+
|
227 |
+
fig.update_layout(title_text="Topic Contribution")
|
228 |
+
|
229 |
+
return fig
|
230 |
+
|
231 |
+
|
232 |
+
def add_top_2_emotions(row):
|
233 |
+
emotions = row[emotion_cols].sort_values(ascending=False)
|
234 |
+
row['first_emotion'] = emotions.index[0]
|
235 |
+
row['second_emotion'] = emotions.index[1]
|
236 |
+
return row
|
237 |
+
|
238 |
+
|
239 |
+
st.set_page_config(layout='wide')
|
240 |
+
st.title("Social-Stat")
|
241 |
+
|
242 |
+
# Load models
|
243 |
+
emotions_clf = init_emotions_model()
|
244 |
+
sentence_encoder = init_embedding_model()
|
245 |
+
|
246 |
+
# Init YouTube API
|
247 |
+
yt_api = YouTubeAPI(
|
248 |
+
api_key=YT_API_KEY,
|
249 |
+
max_comment_size=MAX_COMMENT_SIZE
|
250 |
+
)
|
251 |
+
|
252 |
+
# Input form
|
253 |
+
with st.form(key='input'):
|
254 |
+
video_id = st.text_input("Video ID")
|
255 |
+
|
256 |
+
# Emotions
|
257 |
+
emotions_checkbox = st.checkbox(
|
258 |
+
"Predict Emotions",
|
259 |
+
value=True,
|
260 |
+
)
|
261 |
+
|
262 |
+
# NMF
|
263 |
+
nmf_checkbox = st.checkbox(
|
264 |
+
"Non-Negative Matrix Factorization",
|
265 |
+
value=True,
|
266 |
+
)
|
267 |
+
|
268 |
+
nmf_components = st.slider(
|
269 |
+
"Topics (NMF Components)",
|
270 |
+
min_value=2,
|
271 |
+
max_value=20,
|
272 |
+
value=10,
|
273 |
+
step=1,
|
274 |
+
)
|
275 |
+
|
276 |
+
tfidf_max_features = st.select_slider(
|
277 |
+
"Words (TF-IDF Vectorizer Max Features)",
|
278 |
+
options=list(range(10, 501)) + [None],
|
279 |
+
value=100,
|
280 |
+
)
|
281 |
+
|
282 |
+
top_words_in_topic = st.slider(
|
283 |
+
"Top Topic Words",
|
284 |
+
min_value=1,
|
285 |
+
max_value=50,
|
286 |
+
value=10,
|
287 |
+
step=1,
|
288 |
+
)
|
289 |
+
|
290 |
+
# t-SNE
|
291 |
+
tsne_checkbox = st.checkbox(
|
292 |
+
"t-SNE Visualization",
|
293 |
+
value=True,
|
294 |
+
)
|
295 |
+
|
296 |
+
tsne_perplexity = st.slider(
|
297 |
+
"t-SNE Perplexity",
|
298 |
+
min_value=5,
|
299 |
+
max_value=50,
|
300 |
+
value=10,
|
301 |
+
step=1,
|
302 |
+
)
|
303 |
+
|
304 |
+
tsne_color_emotion = st.selectbox(
|
305 |
+
"Emotion For The Plot Color",
|
306 |
+
options=['first_emotion', 'second_emotion']
|
307 |
+
)
|
308 |
+
|
309 |
+
submit = st.form_submit_button("Analyze")
|
310 |
+
|
311 |
+
|
312 |
+
if submit:
|
313 |
+
# Get comments
|
314 |
+
try:
|
315 |
+
bad_id = False
|
316 |
+
comments = yt_api.get_comments(video_id)
|
317 |
+
except KeyError:
|
318 |
+
st.write("Video not found.")
|
319 |
+
bad_id = True
|
320 |
+
|
321 |
+
if not bad_id:
|
322 |
+
plots = []
|
323 |
+
|
324 |
+
# Convert to pandas DataFrame and sort by publishing date
|
325 |
+
df = pd.DataFrame(comments).sort_values('published_at')
|
326 |
+
|
327 |
+
emotion_cols = []
|
328 |
+
if emotions_checkbox:
|
329 |
+
# Predict emotions
|
330 |
+
df = predict_emotions(df, emotions_clf)
|
331 |
+
emotion_cols = list(df.columns[11:])
|
332 |
+
|
333 |
+
# Get emotion distribution figure
|
334 |
+
emotion_fig = emotion_dist_plot(df, emotion_cols)
|
335 |
+
|
336 |
+
# TODO: Get emotion contribution figure
|
337 |
+
|
338 |
+
# Get top 2 emotions
|
339 |
+
df = df.apply(add_top_2_emotions, axis=1)
|
340 |
+
|
341 |
+
if nmf_checkbox:
|
342 |
+
# NMF
|
343 |
+
df, nmf_figs = nmf_plots(df, nmf_components, tfidf_max_features)
|
344 |
+
plots.extend(nmf_figs)
|
345 |
+
|
346 |
+
if tsne_checkbox:
|
347 |
+
# t-SNE visualization
|
348 |
+
df, tsne_figs = tsne_plots(df,
|
349 |
+
sentence_encoder,
|
350 |
+
emotion_cols,
|
351 |
+
tsne_color_emotion,
|
352 |
+
tsne_perplexity)
|
353 |
+
plots.extend(tsne_figs)
|
354 |
+
|
355 |
+
# Show the final DataFrame
|
356 |
+
st.dataframe(df)
|
357 |
+
|
358 |
+
# Plot all figures
|
359 |
+
if emotions_checkbox:
|
360 |
+
st.plotly_chart(emotion_fig, use_container_width=True)
|
361 |
+
|
362 |
+
cols = st.columns(2)
|
363 |
+
for i, plot in enumerate(plots):
|
364 |
+
cols[i % 2].plotly_chart(
|
365 |
+
plot, sharing='streamlit',
|
366 |
+
theme='streamlit',
|
367 |
+
use_container_width=True)
|
src/main.py
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
from fastapi import FastAPI, Response
|
2 |
-
from pydantic_settings import BaseSettings, SettingsConfigDict
|
3 |
-
import pandas as pd
|
4 |
-
|
5 |
-
from src.yt_api import YouTubeAPI
|
6 |
-
from src.models import init_emotions_model
|
7 |
-
|
8 |
-
|
9 |
-
class Settings(BaseSettings):
|
10 |
-
YT_API_KEY: str
|
11 |
-
PRED_BATCH_SIZE: int = 512
|
12 |
-
MAX_COMMENT_SIZE: int = 300
|
13 |
-
model_config = SettingsConfigDict(env_file='.env')
|
14 |
-
|
15 |
-
|
16 |
-
settings = Settings()
|
17 |
-
app = FastAPI(title='social-stat')
|
18 |
-
|
19 |
-
emotions_clf = init_emotions_model()
|
20 |
-
yt_api = YouTubeAPI(
|
21 |
-
api_key=settings.YT_API_KEY,
|
22 |
-
max_comment_size=settings.MAX_COMMENT_SIZE
|
23 |
-
)
|
24 |
-
|
25 |
-
|
26 |
-
@app.get('/')
|
27 |
-
def home():
|
28 |
-
return 'social-stat'
|
29 |
-
|
30 |
-
|
31 |
-
@app.get('/predict')
|
32 |
-
def predict(video_id):
|
33 |
-
# Get comments
|
34 |
-
comments = yt_api.get_comments(video_id)
|
35 |
-
comments_df = pd.DataFrame(comments)
|
36 |
-
|
37 |
-
# Predict emotions in batches
|
38 |
-
text_list = comments_df['text_display'].to_list()
|
39 |
-
batch_size = settings.PRED_BATCH_SIZE
|
40 |
-
text_batches = [text_list[i:i + batch_size]
|
41 |
-
for i in range(0, len(text_list), batch_size)]
|
42 |
-
preds = [comment_emotions
|
43 |
-
for text_batch in text_batches
|
44 |
-
for comment_emotions in emotions_clf(text_batch)]
|
45 |
-
|
46 |
-
# Add predictions to DataFrame
|
47 |
-
preds_df = pd.DataFrame([{emotion['label']: emotion['score']
|
48 |
-
for emotion in pred} for pred in preds])
|
49 |
-
comments_df = pd.concat([comments_df, preds_df], axis=1)
|
50 |
-
|
51 |
-
# Return DataFrame as a JSON file
|
52 |
-
return Response(
|
53 |
-
content=comments_df.to_json(orient='records'),
|
54 |
-
media_type='application/json')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/models.py
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
-
|
3 |
-
|
4 |
-
def init_emotions_model():
|
5 |
-
classifier = pipeline(
|
6 |
-
task="text-classification",
|
7 |
-
model="SamLowe/roberta-base-go_emotions",
|
8 |
-
top_k=None)
|
9 |
-
|
10 |
-
return classifier
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/test_main.py
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
from fastapi.testclient import TestClient
|
2 |
-
from src.main import app
|
3 |
-
import pandas as pd
|
4 |
-
|
5 |
-
|
6 |
-
client = TestClient(app)
|
7 |
-
|
8 |
-
|
9 |
-
def test_home():
|
10 |
-
"""Test home page."""
|
11 |
-
response = client.get("/")
|
12 |
-
assert response.status_code == 200
|
13 |
-
|
14 |
-
|
15 |
-
def test_predict():
|
16 |
-
"""Test predict method on an example video."""
|
17 |
-
TEST_VIDEO_ID = "0peXnOnDgQ8"
|
18 |
-
response = client.get(
|
19 |
-
"/predict/",
|
20 |
-
params={"video_id": TEST_VIDEO_ID}
|
21 |
-
)
|
22 |
-
df = pd.read_json(response, orient='records')
|
23 |
-
|
24 |
-
# Ensure the DataFrame has the right amount of columns
|
25 |
-
assert df.shape[1] == 39
|
26 |
-
# Ensure there are no NaN values
|
27 |
-
assert df.isna().sum().sum() == 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/yt_api.py
CHANGED
@@ -34,6 +34,10 @@ class YouTubeAPI():
|
|
34 |
'pageToken': page_token,
|
35 |
}
|
36 |
response = requests.get(url, params=payload)
|
|
|
|
|
|
|
|
|
37 |
return response.json()
|
38 |
|
39 |
def response_to_comments(self, response):
|
|
|
34 |
'pageToken': page_token,
|
35 |
}
|
36 |
response = requests.get(url, params=payload)
|
37 |
+
|
38 |
+
# Ensure it's not a bad request
|
39 |
+
assert response.status_code != 400
|
40 |
+
|
41 |
return response.json()
|
42 |
|
43 |
def response_to_comments(self, response):
|
vm_startup.sh
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
# Script for an automatic startup on a virtual machine.
|
2 |
-
. /home/user/python_venv/social-stat/bin/activate
|
3 |
-
cd /home/user/social-stat
|
4 |
-
git pull
|
5 |
-
pip install -r requirements.txt
|
6 |
-
uvicorn src.main:app --host 0.0.0.0 --port 8000 > /home/user/log.txt 2>&1
|
|
|
|
|
|
|
|
|
|
|
|
|
|