molinari135 commited on
Commit
22c9d57
β€’
1 Parent(s): a1a7d89

Added YAML in README file

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Product Return Prediction
2
+
3
+ <a target="_blank" href="https://cookiecutter-data-science.drivendata.org/">
4
+ <img src="https://img.shields.io/badge/CCDS-Project%20template-328F97?logo=cookiecutter" />
5
+ </a>
6
+
7
+ ---
8
+ title: Product Return Prediction API
9
+ emoji: πŸƒ
10
+ colorFrom: purple
11
+ colorTo: red
12
+ sdk: static
13
+ pinned: false
14
+ ---
15
+
16
+ This repository contains a project designed for Armani to analyze past orders and returns, predicting which products are likely to be returned and when. The system supports logistics, product management, and marketing teams by providing actionable insights to reduce return rates, optimize inventory management, and improve customer satisfaction.
17
+
18
+ ## Project Organization
19
+
20
+ ```
21
+ β”œβ”€β”€ LICENSE <- Open-source license if one is chosen
22
+ β”œβ”€β”€ Makefile <- Makefile with convenience commands like `make data` or `make train`
23
+ β”œβ”€β”€ README.md <- The top-level README for developers using this project.
24
+ β”œβ”€β”€ data
25
+ β”‚ β”œβ”€β”€ external <- Data from third party sources.
26
+ β”‚ β”œβ”€β”€ interim <- Intermediate data that has been transformed.
27
+ β”‚ β”œβ”€β”€ processed <- The final, canonical data sets for modeling.
28
+ β”‚ └── raw <- The original, immutable data dump.
29
+ β”‚
30
+ β”œβ”€β”€ docs <- A default mkdocs project; see www.mkdocs.org for details
31
+ β”‚
32
+ β”œβ”€β”€ models <- Trained and serialized models, model predictions, or model summaries
33
+ β”‚
34
+ β”œβ”€β”€ notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
35
+ β”‚ the creator's initials, and a short `-` delimited description, e.g.
36
+ β”‚ `1.0-jqp-initial-data-exploration`.
37
+ β”‚
38
+ β”œβ”€β”€ pyproject.toml <- Project configuration file with package metadata for
39
+ β”‚ product_return_prediction and configuration for tools like black
40
+ β”‚
41
+ β”œβ”€β”€ references <- Data dictionaries, manuals, and all other explanatory materials.
42
+ β”‚
43
+ β”œβ”€β”€ reports <- Generated analysis as HTML, PDF, LaTeX, etc.
44
+ β”‚ └── figures <- Generated graphics and figures to be used in reporting
45
+ β”‚
46
+ β”œβ”€β”€ requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
47
+ β”‚ generated with `pip freeze > requirements.txt`
48
+ β”‚
49
+ β”œβ”€β”€ setup.cfg <- Configuration file for flake8
50
+ β”‚
51
+ └── product_return_prediction <- Source code for use in this project.
52
+ β”‚
53
+ β”œβ”€β”€ __init__.py <- Makes product_return_prediction a Python module
54
+ β”‚
55
+ β”œβ”€β”€ config.py <- Store useful variables and configuration
56
+ β”‚
57
+ β”œβ”€β”€ dataset.py <- Scripts to download or generate data
58
+ β”‚
59
+ β”œβ”€β”€ features.py <- Code to create features for modeling
60
+ β”‚
61
+ β”œβ”€β”€ modeling
62
+ β”‚ β”œβ”€β”€ __init__.py
63
+ β”‚ β”œβ”€β”€ predict.py <- Code to run model inference with trained models
64
+ β”‚ └── train.py <- Code to train models
65
+ β”‚
66
+ └── plots.py <- Code to create visualizations
67
+ ```
68
+
69
+ --------
70
+