Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import torch | |
import os | |
from PIL import Image | |
import io | |
# Check if CUDA is available (Hugging Face Spaces supports GPU acceleration) | |
device = 0 if torch.cuda.is_available() else -1 | |
print(f"Using device: {'CUDA' if device == 0 else 'CPU'}") | |
# Initialize the image processing pipeline | |
# You can replace this with any Hugging Face model that processes images | |
model_name = "google/vit-base-patch16-224" | |
image_processor = pipeline("image-classification", model=model_name, device=device) | |
def process_image(input_image): | |
""" | |
Process the uploaded image through the model and return results | |
""" | |
if input_image is None: | |
return [{"label": "No image provided", "score": 0.0}] | |
# Run the image through the model | |
results = image_processor(input_image) | |
# Return top 5 predictions | |
return results[:5] | |
def save_output(results): | |
""" | |
Convert results to a downloadable format | |
""" | |
if not results or len(results) == 0: | |
return None | |
output_text = "Model Predictions:\n\n" | |
for result in results: | |
output_text += f"Label: {result['label']}, Score: {result['score']:.4f}\n" | |
# Create a file for download | |
with open("results.txt", "w") as f: | |
f.write(output_text) | |
return "results.txt" | |
# Create the Gradio interface with a more polished design | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Image Classification Demo") | |
gr.Markdown("Upload an image and get classification results from the model.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# Input components | |
input_image = gr.Image(type="pil", label="Upload Image") | |
with gr.Row(): | |
submit_btn = gr.Button("Process Image", variant="primary") | |
clear_btn = gr.Button("Clear") | |
with gr.Column(scale=1): | |
# Output components | |
output_results = gr.JSON(label="Model Predictions") | |
download_btn = gr.Button("Download Results") | |
download_output = gr.File(label="Download Output") | |
# Set up the processing flow | |
submit_btn.click( | |
fn=process_image, | |
inputs=[input_image], | |
outputs=[output_results] | |
) | |
clear_btn.click( | |
fn=lambda: (None, None, None), | |
inputs=[], | |
outputs=[input_image, output_results, download_output] | |
) | |
download_btn.click( | |
fn=save_output, | |
inputs=[output_results], | |
outputs=[download_output] | |
) | |
# Add example images | |
gr.Examples( | |
examples=[ | |
os.path.join(os.path.dirname(__file__), "examples/cat.jpg"), | |
os.path.join(os.path.dirname(__file__), "examples/dog.jpg"), | |
], | |
inputs=input_image, | |
label="Example Images" | |
) | |
# Add information footer | |
gr.Markdown(""" | |
### About this demo | |
- Model: [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) | |
- This demo classifies images into 1000 ImageNet categories | |
- Created with Gradio and Hugging Face Transformers | |
""") | |
# For Hugging Face Spaces, we use the Gradio app directly | |
demo.launch() |