Spaces:
Runtime error
Runtime error
import math | |
import torch | |
from torch import nn | |
from einops import rearrange, repeat | |
from backend.attention import attention_function | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
def checkpoint(f, args, parameters, enable=False): | |
if enable: | |
raise NotImplementedError('Gradient Checkpointing is not implemented.') | |
return f(*args) | |
def exists(val): | |
return val is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d | |
def conv_nd(dims, *args, **kwargs): | |
if dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
else: | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def avg_pool_nd(dims, *args, **kwargs): | |
if dims == 1: | |
return nn.AvgPool1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.AvgPool2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.AvgPool3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def apply_control(h, control, name): | |
if control is not None and name in control and len(control[name]) > 0: | |
ctrl = control[name].pop() | |
if ctrl is not None: | |
try: | |
h += ctrl | |
except: | |
print("warning control could not be applied", h.shape, ctrl.shape) | |
return h | |
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): | |
# Consistent with Kohya to reduce differences between model training and inference. | |
# Will be 0.005% slower than ComfyUI but Forge outweigh image quality than speed. | |
if not repeat_only: | |
half = dim // 2 | |
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=timesteps.device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
else: | |
embedding = repeat(timesteps, 'b -> b d', d=dim) | |
return embedding | |
class TimestepBlock(nn.Module): | |
pass | |
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
def forward(self, x, emb, context=None, transformer_options={}, output_shape=None): | |
block_inner_modifiers = transformer_options.get("block_inner_modifiers", []) | |
for layer_index, layer in enumerate(self): | |
for modifier in block_inner_modifiers: | |
x = modifier(x, 'before', layer, layer_index, self, transformer_options) | |
if isinstance(layer, TimestepBlock): | |
x = layer(x, emb, transformer_options) | |
elif isinstance(layer, SpatialTransformer): | |
x = layer(x, context, transformer_options) | |
if "transformer_index" in transformer_options: | |
transformer_options["transformer_index"] += 1 | |
elif isinstance(layer, Upsample): | |
x = layer(x, output_shape=output_shape) | |
else: | |
x = layer(x) | |
for modifier in block_inner_modifiers: | |
x = modifier(x, 'after', layer, layer_index, self, transformer_options) | |
return x | |
class Timestep(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
def forward(self, t): | |
return timestep_embedding(t, self.dim) | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * torch.nn.functional.gelu(gate) | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
project_in = nn.Sequential( | |
nn.Linear(dim, inner_dim), | |
nn.GELU() | |
) if not glu else GEGLU(dim, inner_dim) | |
self.net = nn.Sequential( | |
project_in, | |
nn.Dropout(dropout), | |
nn.Linear(inner_dim, dim_out) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class CrossAttention(nn.Module): | |
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): | |
super().__init__() | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.heads = heads | |
self.dim_head = dim_head | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) | |
def forward(self, x, context=None, value=None, mask=None, transformer_options={}): | |
q = self.to_q(x) | |
context = default(context, x) | |
k = self.to_k(context) | |
if value is not None: | |
v = self.to_v(value) | |
del value | |
else: | |
v = self.to_v(context) | |
out = attention_function(q, k, v, self.heads, mask) | |
return self.to_out(out) | |
class BasicTransformerBlock(nn.Module): | |
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, | |
inner_dim=None, disable_self_attn=False): | |
super().__init__() | |
self.ff_in = ff_in or inner_dim is not None | |
if inner_dim is None: | |
inner_dim = dim | |
self.is_res = inner_dim == dim | |
if self.ff_in: | |
self.norm_in = nn.LayerNorm(dim) | |
self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff) | |
self.disable_self_attn = disable_self_attn | |
self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout, context_dim=context_dim if self.disable_self_attn else None) | |
self.norm1 = nn.LayerNorm(inner_dim) | |
self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout) | |
self.norm2 = nn.LayerNorm(inner_dim) | |
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff) | |
self.norm3 = nn.LayerNorm(inner_dim) | |
self.checkpoint = checkpoint | |
self.n_heads = n_heads | |
self.d_head = d_head | |
def forward(self, x, context=None, transformer_options={}): | |
return checkpoint(self._forward, (x, context, transformer_options), None, self.checkpoint) | |
def _forward(self, x, context=None, transformer_options={}): | |
# Stolen from ComfyUI with some modifications | |
extra_options = {} | |
block = transformer_options.get("block", None) | |
block_index = transformer_options.get("block_index", 0) | |
transformer_patches = {} | |
transformer_patches_replace = {} | |
for k in transformer_options: | |
if k == "patches": | |
transformer_patches = transformer_options[k] | |
elif k == "patches_replace": | |
transformer_patches_replace = transformer_options[k] | |
else: | |
extra_options[k] = transformer_options[k] | |
extra_options["n_heads"] = self.n_heads | |
extra_options["dim_head"] = self.d_head | |
if self.ff_in: | |
x_skip = x | |
x = self.ff_in(self.norm_in(x)) | |
if self.is_res: | |
x += x_skip | |
n = self.norm1(x) | |
if self.disable_self_attn: | |
context_attn1 = context | |
else: | |
context_attn1 = None | |
value_attn1 = None | |
if "attn1_patch" in transformer_patches: | |
patch = transformer_patches["attn1_patch"] | |
if context_attn1 is None: | |
context_attn1 = n | |
value_attn1 = context_attn1 | |
for p in patch: | |
n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options) | |
if block is not None: | |
transformer_block = (block[0], block[1], block_index) | |
else: | |
transformer_block = None | |
attn1_replace_patch = transformer_patches_replace.get("attn1", {}) | |
block_attn1 = transformer_block | |
if block_attn1 not in attn1_replace_patch: | |
block_attn1 = block | |
if block_attn1 in attn1_replace_patch: | |
if context_attn1 is None: | |
context_attn1 = n | |
value_attn1 = n | |
n = self.attn1.to_q(n) | |
context_attn1 = self.attn1.to_k(context_attn1) | |
value_attn1 = self.attn1.to_v(value_attn1) | |
n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options) | |
n = self.attn1.to_out(n) | |
else: | |
n = self.attn1(n, context=context_attn1, value=value_attn1, transformer_options=extra_options) | |
if "attn1_output_patch" in transformer_patches: | |
patch = transformer_patches["attn1_output_patch"] | |
for p in patch: | |
n = p(n, extra_options) | |
x += n | |
if "middle_patch" in transformer_patches: | |
patch = transformer_patches["middle_patch"] | |
for p in patch: | |
x = p(x, extra_options) | |
if self.attn2 is not None: | |
n = self.norm2(x) | |
context_attn2 = context | |
value_attn2 = None | |
if "attn2_patch" in transformer_patches: | |
patch = transformer_patches["attn2_patch"] | |
value_attn2 = context_attn2 | |
for p in patch: | |
n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options) | |
attn2_replace_patch = transformer_patches_replace.get("attn2", {}) | |
block_attn2 = transformer_block | |
if block_attn2 not in attn2_replace_patch: | |
block_attn2 = block | |
if block_attn2 in attn2_replace_patch: | |
if value_attn2 is None: | |
value_attn2 = context_attn2 | |
n = self.attn2.to_q(n) | |
context_attn2 = self.attn2.to_k(context_attn2) | |
value_attn2 = self.attn2.to_v(value_attn2) | |
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options) | |
n = self.attn2.to_out(n) | |
else: | |
n = self.attn2(n, context=context_attn2, value=value_attn2, transformer_options=extra_options) | |
if "attn2_output_patch" in transformer_patches: | |
patch = transformer_patches["attn2_output_patch"] | |
for p in patch: | |
n = p(n, extra_options) | |
x += n | |
x_skip = 0 | |
if self.is_res: | |
x_skip = x | |
x = self.ff(self.norm3(x)) | |
if self.is_res: | |
x += x_skip | |
return x | |
class SpatialTransformer(nn.Module): | |
def __init__(self, in_channels, n_heads, d_head, | |
depth=1, dropout=0., context_dim=None, | |
disable_self_attn=False, use_linear=False, | |
use_checkpoint=True): | |
super().__init__() | |
if exists(context_dim) and not isinstance(context_dim, list): | |
context_dim = [context_dim] * depth | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
if not use_linear: | |
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
else: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], | |
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint) | |
for d in range(depth)] | |
) | |
if not use_linear: | |
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
else: | |
self.proj_out = nn.Linear(in_channels, inner_dim) | |
self.use_linear = use_linear | |
def forward(self, x, context=None, transformer_options={}): | |
if not isinstance(context, list): | |
context = [context] * len(self.transformer_blocks) | |
b, c, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
if not self.use_linear: | |
x = self.proj_in(x) | |
x = rearrange(x, 'b c h w -> b (h w) c').contiguous() | |
if self.use_linear: | |
x = self.proj_in(x) | |
for i, block in enumerate(self.transformer_blocks): | |
transformer_options["block_index"] = i | |
x = block(x, context=context[i], transformer_options=transformer_options) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() | |
if not self.use_linear: | |
x = self.proj_out(x) | |
return x + x_in | |
class Upsample(nn.Module): | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
if use_conv: | |
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) | |
def forward(self, x, output_shape=None): | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2] | |
if output_shape is not None: | |
shape[1] = output_shape[3] | |
shape[2] = output_shape[4] | |
else: | |
shape = [x.shape[2] * 2, x.shape[3] * 2] | |
if output_shape is not None: | |
shape[0] = output_shape[2] | |
shape[1] = output_shape[3] | |
x = torch.nn.functional.interpolate(x, size=shape, mode="nearest") | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
if use_conv: | |
self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class ResBlock(TimestepBlock): | |
def __init__(self, channels, emb_channels, dropout, out_channels=None, use_conv=False, use_scale_shift_norm=False, | |
dims=2, use_checkpoint=False, up=False, down=False, kernel_size=3, exchange_temb_dims=False, | |
skip_t_emb=False): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_checkpoint = use_checkpoint | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.exchange_temb_dims = exchange_temb_dims | |
if isinstance(kernel_size, list): | |
padding = [k // 2 for k in kernel_size] | |
else: | |
padding = kernel_size // 2 | |
self.in_layers = nn.Sequential( | |
nn.GroupNorm(32, channels), | |
nn.SiLU(), | |
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims) | |
self.x_upd = Upsample(channels, False, dims) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims) | |
self.x_upd = Downsample(channels, False, dims) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.skip_t_emb = skip_t_emb | |
if self.skip_t_emb: | |
self.emb_layers = None | |
self.exchange_temb_dims = False | |
else: | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(emb_channels, 2 * self.out_channels if use_scale_shift_norm else self.out_channels), | |
) | |
self.out_layers = nn.Sequential( | |
nn.GroupNorm(32, self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding) | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding) | |
else: | |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
def forward(self, x, emb, transformer_options={}): | |
return checkpoint(self._forward, (x, emb, transformer_options), None, self.use_checkpoint) | |
def _forward(self, x, emb, transformer_options={}): | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
if "group_norm_wrapper" in transformer_options: | |
in_norm, in_rest = in_rest[0], in_rest[1:] | |
h = transformer_options["group_norm_wrapper"](in_norm, x, transformer_options) | |
h = in_rest(h) | |
else: | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
if "group_norm_wrapper" in transformer_options: | |
in_norm = self.in_layers[0] | |
h = transformer_options["group_norm_wrapper"](in_norm, x, transformer_options) | |
h = self.in_layers[1:](h) | |
else: | |
h = self.in_layers(x) | |
emb_out = None | |
if not self.skip_t_emb: | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
if "group_norm_wrapper" in transformer_options: | |
h = transformer_options["group_norm_wrapper"](out_norm, h, transformer_options) | |
else: | |
h = out_norm(h) | |
if emb_out is not None: | |
scale, shift = torch.chunk(emb_out, 2, dim=1) | |
h *= (1 + scale) | |
h += shift | |
h = out_rest(h) | |
else: | |
if emb_out is not None: | |
if self.exchange_temb_dims: | |
emb_out = rearrange(emb_out, "b t c ... -> b c t ...") | |
h = h + emb_out | |
if "group_norm_wrapper" in transformer_options: | |
h = transformer_options["group_norm_wrapper"](self.out_layers[0], h, transformer_options) | |
h = self.out_layers[1:](h) | |
else: | |
h = self.out_layers(h) | |
return self.skip_connection(x) + h | |
class IntegratedUNet2DConditionModel(nn.Module, ConfigMixin): | |
config_name = 'config.json' | |
def __init__(self, in_channels, model_channels, out_channels, num_res_blocks, dropout=0, channel_mult=(1, 2, 4, 8), | |
conv_resample=True, dims=2, num_classes=None, use_checkpoint=False, num_heads=-1, num_head_channels=-1, | |
use_scale_shift_norm=False, resblock_updown=False, use_spatial_transformer=False, transformer_depth=1, | |
context_dim=None, disable_self_attentions=None, num_attention_blocks=None, | |
disable_middle_self_attn=False, use_linear_in_transformer=False, adm_in_channels=None, | |
transformer_depth_middle=None, transformer_depth_output=None): | |
super().__init__() | |
if context_dim is not None: | |
assert use_spatial_transformer | |
if num_heads == -1: | |
assert num_head_channels != -1 | |
if num_head_channels == -1: | |
assert num_heads != -1 | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
if isinstance(num_res_blocks, int): | |
self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
else: | |
self.num_res_blocks = num_res_blocks | |
if disable_self_attentions is not None: | |
assert len(disable_self_attentions) == len(channel_mult) | |
if num_attention_blocks is not None: | |
assert len(num_attention_blocks) == len(self.num_res_blocks) | |
transformer_depth = transformer_depth[:] | |
transformer_depth_output = transformer_depth_output[:] | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.num_classes = num_classes | |
self.use_checkpoint = use_checkpoint | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
nn.Linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
nn.Linear(time_embed_dim, time_embed_dim), | |
) | |
if self.num_classes is not None: | |
if isinstance(self.num_classes, int): | |
self.label_emb = nn.Embedding(num_classes, time_embed_dim) | |
elif self.num_classes == "continuous": | |
self.label_emb = nn.Linear(1, time_embed_dim) | |
elif self.num_classes == "sequential": | |
assert adm_in_channels is not None | |
self.label_emb = nn.Sequential( | |
nn.Sequential( | |
nn.Linear(adm_in_channels, time_embed_dim), | |
nn.SiLU(), | |
nn.Linear(time_embed_dim, time_embed_dim), | |
) | |
) | |
else: | |
raise ValueError('Bad ADM') | |
self.input_blocks = nn.ModuleList( | |
[TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))] | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for nr in range(self.num_res_blocks[level]): | |
layers = [ | |
ResBlock( | |
channels=ch, | |
emb_channels=time_embed_dim, | |
dropout=dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = mult * model_channels | |
num_transformers = transformer_depth.pop(0) | |
if num_transformers > 0: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if exists(disable_self_attentions): | |
disabled_sa = disable_self_attentions[level] | |
else: | |
disabled_sa = False | |
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | |
layers.append(SpatialTransformer( | |
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, | |
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint, | |
use_linear=use_linear_in_transformer) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
channels=ch, | |
emb_channels=time_embed_dim, | |
dropout=dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
mid_block = [ | |
ResBlock( | |
channels=ch, | |
emb_channels=time_embed_dim, | |
dropout=dropout, | |
out_channels=None, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
)] | |
if transformer_depth_middle >= 0: | |
mid_block += [ | |
SpatialTransformer( | |
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, | |
disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint, | |
use_linear=use_linear_in_transformer), | |
ResBlock( | |
channels=ch, | |
emb_channels=time_embed_dim, | |
dropout=dropout, | |
out_channels=None, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
)] | |
self.middle_block = TimestepEmbedSequential(*mid_block) | |
self._feature_size += ch | |
self.output_blocks = nn.ModuleList([]) | |
for level, mult in list(enumerate(channel_mult))[::-1]: | |
for i in range(self.num_res_blocks[level] + 1): | |
ich = input_block_chans.pop() | |
layers = [ | |
ResBlock( | |
channels=ch + ich, | |
emb_channels=time_embed_dim, | |
dropout=dropout, | |
out_channels=model_channels * mult, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = model_channels * mult | |
num_transformers = transformer_depth_output.pop() | |
if num_transformers > 0: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if exists(disable_self_attentions): | |
disabled_sa = disable_self_attentions[level] | |
else: | |
disabled_sa = False | |
if not exists(num_attention_blocks) or i < num_attention_blocks[level]: | |
layers.append( | |
SpatialTransformer( | |
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, | |
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint, | |
use_linear=use_linear_in_transformer | |
) | |
) | |
if level and i == self.num_res_blocks[level]: | |
out_ch = ch | |
layers.append( | |
ResBlock( | |
channels=ch, | |
emb_channels=time_embed_dim, | |
dropout=dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
up=True, | |
) | |
if resblock_updown | |
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) | |
) | |
ds //= 2 | |
self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
self.out = nn.Sequential( | |
nn.GroupNorm(32, ch), | |
nn.SiLU(), | |
conv_nd(dims, model_channels, out_channels, 3, padding=1), | |
) | |
def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): | |
transformer_options["original_shape"] = list(x.shape) | |
transformer_options["transformer_index"] = 0 | |
transformer_patches = transformer_options.get("patches", {}) | |
block_modifiers = transformer_options.get("block_modifiers", []) | |
assert (y is not None) == (self.num_classes is not None) | |
hs = [] | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) | |
emb = self.time_embed(t_emb) | |
if self.num_classes is not None: | |
assert y.shape[0] == x.shape[0] | |
emb = emb + self.label_emb(y) | |
h = x | |
for id, module in enumerate(self.input_blocks): | |
transformer_options["block"] = ("input", id) | |
for block_modifier in block_modifiers: | |
h = block_modifier(h, 'before', transformer_options) | |
h = module(h, emb, context, transformer_options) | |
h = apply_control(h, control, 'input') | |
for block_modifier in block_modifiers: | |
h = block_modifier(h, 'after', transformer_options) | |
if "input_block_patch" in transformer_patches: | |
patch = transformer_patches["input_block_patch"] | |
for p in patch: | |
h = p(h, transformer_options) | |
hs.append(h) | |
if "input_block_patch_after_skip" in transformer_patches: | |
patch = transformer_patches["input_block_patch_after_skip"] | |
for p in patch: | |
h = p(h, transformer_options) | |
transformer_options["block"] = ("middle", 0) | |
for block_modifier in block_modifiers: | |
h = block_modifier(h, 'before', transformer_options) | |
h = self.middle_block(h, emb, context, transformer_options) | |
h = apply_control(h, control, 'middle') | |
for block_modifier in block_modifiers: | |
h = block_modifier(h, 'after', transformer_options) | |
for id, module in enumerate(self.output_blocks): | |
transformer_options["block"] = ("output", id) | |
hsp = hs.pop() | |
hsp = apply_control(hsp, control, 'output') | |
if "output_block_patch" in transformer_patches: | |
patch = transformer_patches["output_block_patch"] | |
for p in patch: | |
h, hsp = p(h, hsp, transformer_options) | |
h = torch.cat([h, hsp], dim=1) | |
del hsp | |
if len(hs) > 0: | |
output_shape = hs[-1].shape | |
else: | |
output_shape = None | |
for block_modifier in block_modifiers: | |
h = block_modifier(h, 'before', transformer_options) | |
h = module(h, emb, context, transformer_options, output_shape) | |
for block_modifier in block_modifiers: | |
h = block_modifier(h, 'after', transformer_options) | |
transformer_options["block"] = ("last", 0) | |
for block_modifier in block_modifiers: | |
h = block_modifier(h, 'before', transformer_options) | |
if "group_norm_wrapper" in transformer_options: | |
out_norm, out_rest = self.out[0], self.out[1:] | |
h = transformer_options["group_norm_wrapper"](out_norm, h, transformer_options) | |
h = out_rest(h) | |
else: | |
h = self.out(h) | |
for block_modifier in block_modifiers: | |
h = block_modifier(h, 'after', transformer_options) | |
return h.type(x.dtype) | |