Spaces:
Runtime error
Runtime error
import torch | |
import math | |
from backend.attention import attention_pytorch as attention_function | |
activations = { | |
"gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"), | |
"relu": torch.nn.functional.relu, | |
} | |
class T5LayerNorm(torch.nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
super().__init__() | |
self.weight = torch.nn.Parameter(torch.empty(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, x): | |
variance = x.pow(2).mean(-1, keepdim=True) | |
x = x * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight.to(x) * x | |
class T5DenseActDense(torch.nn.Module): | |
def __init__(self, model_dim, ff_dim, ff_activation): | |
super().__init__() | |
self.wi = torch.nn.Linear(model_dim, ff_dim, bias=False) | |
self.wo = torch.nn.Linear(ff_dim, model_dim, bias=False) | |
self.act = activations[ff_activation] | |
def forward(self, x): | |
x = self.act(self.wi(x)) | |
x = self.wo(x) | |
return x | |
class T5DenseGatedActDense(torch.nn.Module): | |
def __init__(self, model_dim, ff_dim, ff_activation): | |
super().__init__() | |
self.wi_0 = torch.nn.Linear(model_dim, ff_dim, bias=False) | |
self.wi_1 = torch.nn.Linear(model_dim, ff_dim, bias=False) | |
self.wo = torch.nn.Linear(ff_dim, model_dim, bias=False) | |
self.act = activations[ff_activation] | |
def forward(self, x): | |
hidden_gelu = self.act(self.wi_0(x)) | |
hidden_linear = self.wi_1(x) | |
x = hidden_gelu * hidden_linear | |
x = self.wo(x) | |
return x | |
class T5LayerFF(torch.nn.Module): | |
def __init__(self, model_dim, ff_dim, ff_activation, gated_act): | |
super().__init__() | |
if gated_act: | |
self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, ff_activation) | |
else: | |
self.DenseReluDense = T5DenseActDense(model_dim, ff_dim, ff_activation) | |
self.layer_norm = T5LayerNorm(model_dim) | |
def forward(self, x): | |
forwarded_states = self.layer_norm(x) | |
forwarded_states = self.DenseReluDense(forwarded_states) | |
x += forwarded_states | |
return x | |
class T5Attention(torch.nn.Module): | |
def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias): | |
super().__init__() | |
self.q = torch.nn.Linear(model_dim, inner_dim, bias=False) | |
self.k = torch.nn.Linear(model_dim, inner_dim, bias=False) | |
self.v = torch.nn.Linear(model_dim, inner_dim, bias=False) | |
self.o = torch.nn.Linear(inner_dim, model_dim, bias=False) | |
self.num_heads = num_heads | |
self.relative_attention_bias = None | |
if relative_attention_bias: | |
self.relative_attention_num_buckets = 32 | |
self.relative_attention_max_distance = 128 | |
self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads) | |
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): | |
relative_buckets = 0 | |
if bidirectional: | |
num_buckets //= 2 | |
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets | |
relative_position = torch.abs(relative_position) | |
else: | |
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) | |
max_exact = num_buckets // 2 | |
is_small = relative_position < max_exact | |
relative_position_if_large = max_exact + ( | |
torch.log(relative_position.float() / max_exact) | |
/ math.log(max_distance / max_exact) | |
* (num_buckets - max_exact) | |
).to(torch.long) | |
relative_position_if_large = torch.min( | |
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) | |
) | |
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) | |
return relative_buckets | |
def compute_bias(self, query_length, key_length, device, dtype): | |
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
relative_position = memory_position - context_position | |
relative_position_bucket = self._relative_position_bucket( | |
relative_position, | |
bidirectional=True, | |
num_buckets=self.relative_attention_num_buckets, | |
max_distance=self.relative_attention_max_distance, | |
) | |
values = self.relative_attention_bias(relative_position_bucket).to(dtype) | |
values = values.permute([2, 0, 1]).unsqueeze(0) | |
return values | |
def forward(self, x, mask=None, past_bias=None): | |
q = self.q(x) | |
k = self.k(x) | |
v = self.v(x) | |
if self.relative_attention_bias is not None: | |
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device, x.dtype) | |
if past_bias is not None: | |
if mask is not None: | |
mask = mask + past_bias | |
else: | |
mask = past_bias | |
out = attention_function(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask) | |
return self.o(out), past_bias | |
class T5LayerSelfAttention(torch.nn.Module): | |
def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias): | |
super().__init__() | |
self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias) | |
self.layer_norm = T5LayerNorm(model_dim) | |
def forward(self, x, mask=None, past_bias=None): | |
output, past_bias = self.SelfAttention(self.layer_norm(x), mask=mask, past_bias=past_bias) | |
x += output | |
return x, past_bias | |
class T5Block(torch.nn.Module): | |
def __init__(self, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention_bias): | |
super().__init__() | |
self.layer = torch.nn.ModuleList() | |
self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias)) | |
self.layer.append(T5LayerFF(model_dim, ff_dim, ff_activation, gated_act)) | |
def forward(self, x, mask=None, past_bias=None): | |
x, past_bias = self.layer[0](x, mask, past_bias) | |
x = self.layer[-1](x) | |
return x, past_bias | |
class T5Stack(torch.nn.Module): | |
def __init__(self, num_layers, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention): | |
super().__init__() | |
self.block = torch.nn.ModuleList( | |
[T5Block(model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention_bias=((not relative_attention) or (i == 0))) for i in range(num_layers)] | |
) | |
self.final_layer_norm = T5LayerNorm(model_dim) | |
def forward(self, x, attention_mask=None): | |
mask = None | |
if attention_mask is not None: | |
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) | |
mask = mask.masked_fill(mask.to(torch.bool), float("-inf")) | |
past_bias = None | |
for i, l in enumerate(self.block): | |
x, past_bias = l(x, mask, past_bias) | |
x = self.final_layer_norm(x) | |
return x | |
class T5(torch.nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.num_layers = config["num_layers"] | |
model_dim = config["d_model"] | |
self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config["d_ff"], config["dense_act_fn"], config["is_gated_act"], config["num_heads"], config["model_type"] != "umt5") | |
self.shared = torch.nn.Embedding(config["vocab_size"], model_dim) | |
def forward(self, input_ids, *args, **kwargs): | |
x = self.shared(input_ids) | |
x = torch.nan_to_num(x) | |
return self.encoder(x, *args, **kwargs) | |
class IntegratedT5(torch.nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.transformer = T5(config) | |
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055)) | |