Spaces:
Runtime error
Runtime error
# Cherry-picked some good parts from ComfyUI with some bad parts fixed | |
import sys | |
import time | |
import psutil | |
import torch | |
import platform | |
from enum import Enum | |
from backend import stream | |
from backend.args import args | |
cpu = torch.device('cpu') | |
class VRAMState(Enum): | |
DISABLED = 0 # No vram present: no need to move models to vram | |
NO_VRAM = 1 # Very low vram: enable all the options to save vram | |
LOW_VRAM = 2 | |
NORMAL_VRAM = 3 | |
HIGH_VRAM = 4 | |
SHARED = 5 # No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both. | |
class CPUState(Enum): | |
GPU = 0 | |
CPU = 1 | |
MPS = 2 | |
# Determine VRAM State | |
vram_state = VRAMState.NORMAL_VRAM | |
set_vram_to = VRAMState.NORMAL_VRAM | |
cpu_state = CPUState.GPU | |
total_vram = 0 | |
lowvram_available = True | |
xpu_available = False | |
if args.pytorch_deterministic: | |
print("Using deterministic algorithms for pytorch") | |
torch.use_deterministic_algorithms(True, warn_only=True) | |
directml_enabled = False | |
if args.directml is not None: | |
import torch_directml | |
directml_enabled = True | |
device_index = args.directml | |
if device_index < 0: | |
directml_device = torch_directml.device() | |
else: | |
directml_device = torch_directml.device(device_index) | |
print("Using directml with device: {}".format(torch_directml.device_name(device_index))) | |
try: | |
import intel_extension_for_pytorch as ipex | |
if torch.xpu.is_available(): | |
xpu_available = True | |
except: | |
pass | |
try: | |
if torch.backends.mps.is_available(): | |
cpu_state = CPUState.MPS | |
import torch.mps | |
except: | |
pass | |
if args.always_cpu: | |
cpu_state = CPUState.CPU | |
def is_intel_xpu(): | |
global cpu_state | |
global xpu_available | |
if cpu_state == CPUState.GPU: | |
if xpu_available: | |
return True | |
return False | |
def get_torch_device(): | |
global directml_enabled | |
global cpu_state | |
if directml_enabled: | |
global directml_device | |
return directml_device | |
if cpu_state == CPUState.MPS: | |
return torch.device("mps") | |
if cpu_state == CPUState.CPU: | |
return torch.device("cpu") | |
else: | |
if is_intel_xpu(): | |
return torch.device("xpu", torch.xpu.current_device()) | |
else: | |
return torch.device(torch.cuda.current_device()) | |
def get_total_memory(dev=None, torch_total_too=False): | |
global directml_enabled | |
if dev is None: | |
dev = get_torch_device() | |
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): | |
mem_total = psutil.virtual_memory().total | |
mem_total_torch = mem_total | |
else: | |
if directml_enabled: | |
mem_total = 1024 * 1024 * 1024 # TODO | |
mem_total_torch = mem_total | |
elif is_intel_xpu(): | |
stats = torch.xpu.memory_stats(dev) | |
mem_reserved = stats['reserved_bytes.all.current'] | |
mem_total_torch = mem_reserved | |
mem_total = torch.xpu.get_device_properties(dev).total_memory | |
else: | |
stats = torch.cuda.memory_stats(dev) | |
mem_reserved = stats['reserved_bytes.all.current'] | |
_, mem_total_cuda = torch.cuda.mem_get_info(dev) | |
mem_total_torch = mem_reserved | |
mem_total = mem_total_cuda | |
if torch_total_too: | |
return (mem_total, mem_total_torch) | |
else: | |
return mem_total | |
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) | |
total_ram = psutil.virtual_memory().total / (1024 * 1024) | |
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)) | |
try: | |
print("pytorch version: {}".format(torch.version.__version__)) | |
except: | |
pass | |
try: | |
OOM_EXCEPTION = torch.cuda.OutOfMemoryError | |
except: | |
OOM_EXCEPTION = Exception | |
if directml_enabled: | |
OOM_EXCEPTION = Exception | |
XFORMERS_VERSION = "" | |
XFORMERS_ENABLED_VAE = True | |
if args.disable_xformers: | |
XFORMERS_IS_AVAILABLE = False | |
else: | |
try: | |
import xformers | |
import xformers.ops | |
XFORMERS_IS_AVAILABLE = True | |
try: | |
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library | |
except: | |
pass | |
try: | |
XFORMERS_VERSION = xformers.version.__version__ | |
print("xformers version: {}".format(XFORMERS_VERSION)) | |
if XFORMERS_VERSION.startswith("0.0.18"): | |
print("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.") | |
print("Please downgrade or upgrade xformers to a different version.\n") | |
XFORMERS_ENABLED_VAE = False | |
except: | |
pass | |
except: | |
XFORMERS_IS_AVAILABLE = False | |
def is_nvidia(): | |
global cpu_state | |
if cpu_state == CPUState.GPU: | |
if torch.version.cuda: | |
return True | |
return False | |
ENABLE_PYTORCH_ATTENTION = False | |
if args.attention_pytorch: | |
ENABLE_PYTORCH_ATTENTION = True | |
XFORMERS_IS_AVAILABLE = False | |
VAE_DTYPES = [torch.float32] | |
try: | |
if is_nvidia(): | |
torch_version = torch.version.__version__ | |
if int(torch_version[0]) >= 2: | |
if ENABLE_PYTORCH_ATTENTION == False and args.attention_split == False and args.attention_quad == False: | |
ENABLE_PYTORCH_ATTENTION = True | |
if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8: | |
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES | |
if is_intel_xpu(): | |
if args.attention_split == False and args.attention_quad == False: | |
ENABLE_PYTORCH_ATTENTION = True | |
except: | |
pass | |
if is_intel_xpu(): | |
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES | |
if args.vae_in_cpu: | |
VAE_DTYPES = [torch.float32] | |
VAE_ALWAYS_TILED = False | |
if ENABLE_PYTORCH_ATTENTION: | |
torch.backends.cuda.enable_math_sdp(True) | |
torch.backends.cuda.enable_flash_sdp(True) | |
torch.backends.cuda.enable_mem_efficient_sdp(True) | |
if args.always_low_vram: | |
set_vram_to = VRAMState.LOW_VRAM | |
lowvram_available = True | |
elif args.always_no_vram: | |
set_vram_to = VRAMState.NO_VRAM | |
elif args.always_high_vram or args.always_gpu: | |
vram_state = VRAMState.HIGH_VRAM | |
FORCE_FP32 = False | |
FORCE_FP16 = False | |
if args.all_in_fp32: | |
print("Forcing FP32, if this improves things please report it.") | |
FORCE_FP32 = True | |
if args.all_in_fp16: | |
print("Forcing FP16.") | |
FORCE_FP16 = True | |
if lowvram_available: | |
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): | |
vram_state = set_vram_to | |
if cpu_state != CPUState.GPU: | |
vram_state = VRAMState.DISABLED | |
if cpu_state == CPUState.MPS: | |
vram_state = VRAMState.SHARED | |
print(f"Set vram state to: {vram_state.name}") | |
ALWAYS_VRAM_OFFLOAD = args.always_offload_from_vram | |
if ALWAYS_VRAM_OFFLOAD: | |
print("Always offload VRAM") | |
PIN_SHARED_MEMORY = args.pin_shared_memory | |
if PIN_SHARED_MEMORY: | |
print("Always pin shared GPU memory") | |
def get_torch_device_name(device): | |
if hasattr(device, 'type'): | |
if device.type == "cuda": | |
try: | |
allocator_backend = torch.cuda.get_allocator_backend() | |
except: | |
allocator_backend = "" | |
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend) | |
else: | |
return "{}".format(device.type) | |
elif is_intel_xpu(): | |
return "{} {}".format(device, torch.xpu.get_device_name(device)) | |
else: | |
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) | |
try: | |
torch_device_name = get_torch_device_name(get_torch_device()) | |
print("Device: {}".format(torch_device_name)) | |
except: | |
torch_device_name = '' | |
print("Could not pick default device.") | |
if 'rtx' in torch_device_name.lower(): | |
if not args.cuda_malloc: | |
print('Hint: your device supports --cuda-malloc for potential speed improvements.') | |
current_loaded_models = [] | |
def state_dict_size(sd, exclude_device=None): | |
module_mem = 0 | |
for k in sd: | |
t = sd[k] | |
if exclude_device is not None: | |
if t.device == exclude_device: | |
continue | |
module_mem += t.nelement() * t.element_size() | |
return module_mem | |
def state_dict_dtype(state_dict): | |
for k, v in state_dict.items(): | |
if hasattr(v, 'is_gguf'): | |
return 'gguf' | |
if 'bitsandbytes__nf4' in k: | |
return 'nf4' | |
if 'bitsandbytes__fp4' in k: | |
return 'fp4' | |
dtype_counts = {} | |
for tensor in state_dict.values(): | |
dtype = tensor.dtype | |
if dtype in dtype_counts: | |
dtype_counts[dtype] += 1 | |
else: | |
dtype_counts[dtype] = 1 | |
major_dtype = None | |
max_count = 0 | |
for dtype, count in dtype_counts.items(): | |
if count > max_count: | |
max_count = count | |
major_dtype = dtype | |
return major_dtype | |
def module_size(module, exclude_device=None): | |
module_mem = 0 | |
for p in module.parameters(): | |
t = p.data | |
if exclude_device is not None: | |
if t.device == exclude_device: | |
continue | |
element_size = t.element_size() | |
if getattr(p, 'quant_type', None) in ['fp4', 'nf4']: | |
if element_size > 1: | |
# not quanted yet | |
element_size = 0.55 # a bit more than 0.5 because of quant state parameters | |
else: | |
# quanted | |
element_size = 1.1 # a bit more than 0.5 because of quant state parameters | |
module_mem += t.nelement() * element_size | |
return module_mem | |
class LoadedModel: | |
def __init__(self, model, memory_required): | |
self.model = model | |
self.memory_required = memory_required | |
self.model_accelerated = False | |
self.device = model.load_device | |
def model_memory(self): | |
return self.model.model_size() | |
def model_memory_required(self, device=None): | |
return module_size(self.model.model, exclude_device=device) | |
def model_load(self, model_gpu_memory_when_using_cpu_swap=-1): | |
patch_model_to = None | |
do_not_need_cpu_swap = model_gpu_memory_when_using_cpu_swap < 0 | |
if do_not_need_cpu_swap: | |
patch_model_to = self.device | |
self.model.model_patches_to(self.device) | |
self.model.model_patches_to(self.model.model_dtype()) | |
try: | |
self.real_model = self.model.forge_patch_model(patch_model_to) | |
self.model.current_device = self.model.load_device | |
except Exception as e: | |
self.model.forge_unpatch_model(self.model.offload_device) | |
self.model_unload() | |
raise e | |
if not do_not_need_cpu_swap: | |
memory_in_swap = 0 | |
mem_counter = 0 | |
mem_cannot_cast = 0 | |
for m in self.real_model.modules(): | |
if hasattr(m, "parameters_manual_cast"): | |
m.prev_parameters_manual_cast = m.parameters_manual_cast | |
m.parameters_manual_cast = True | |
module_mem = module_size(m) | |
if mem_counter + module_mem < model_gpu_memory_when_using_cpu_swap: | |
m.to(self.device) | |
mem_counter += module_mem | |
else: | |
memory_in_swap += module_mem | |
m.to(self.model.offload_device) | |
if PIN_SHARED_MEMORY and is_device_cpu(self.model.offload_device): | |
m._apply(lambda x: x.pin_memory()) | |
elif hasattr(m, "weight"): | |
m.to(self.device) | |
module_mem = module_size(m) | |
mem_counter += module_mem | |
mem_cannot_cast += module_mem | |
if mem_cannot_cast > 0: | |
print(f"[Memory Management] Loaded to GPU for backward capability: {mem_cannot_cast / (1024 * 1024):.2f} MB") | |
swap_flag = 'Shared' if PIN_SHARED_MEMORY else 'CPU' | |
method_flag = 'asynchronous' if stream.should_use_stream() else 'blocked' | |
print(f"[Memory Management] Loaded to {swap_flag} Swap: {memory_in_swap / (1024 * 1024):.2f} MB ({method_flag} method)") | |
print(f"[Memory Management] Loaded to GPU: {mem_counter / (1024 * 1024):.2f} MB") | |
self.model_accelerated = True | |
if is_intel_xpu() and not args.disable_ipex_hijack: | |
self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True) | |
return self.real_model | |
def model_unload(self, avoid_model_moving=False): | |
if self.model_accelerated: | |
for m in self.real_model.modules(): | |
if hasattr(m, "prev_parameters_manual_cast"): | |
m.parameters_manual_cast = m.prev_parameters_manual_cast | |
del m.prev_parameters_manual_cast | |
self.model_accelerated = False | |
if avoid_model_moving: | |
self.model.forge_unpatch_model() | |
else: | |
self.model.forge_unpatch_model(self.model.offload_device) | |
self.model.model_patches_to(self.model.offload_device) | |
def __eq__(self, other): | |
return self.model is other.model # and self.memory_required == other.memory_required | |
current_inference_memory = 1024 * 1024 * 1024 | |
def minimum_inference_memory(): | |
global current_inference_memory | |
return current_inference_memory | |
def unload_model_clones(model): | |
to_unload = [] | |
for i in range(len(current_loaded_models)): | |
if model.is_clone(current_loaded_models[i].model): | |
to_unload = [i] + to_unload | |
if len(to_unload) > 0: | |
print(f"Reuse {len(to_unload)} loaded models") | |
for i in to_unload: | |
current_loaded_models.pop(i).model_unload(avoid_model_moving=True) | |
def free_memory(memory_required, device, keep_loaded=[]): | |
print(f"[Unload] Trying to free {memory_required / (1024 * 1024):.2f} MB for {device} with {len(keep_loaded)} models keep loaded ...") | |
offload_everything = ALWAYS_VRAM_OFFLOAD or vram_state == VRAMState.NO_VRAM | |
unloaded_model = False | |
for i in range(len(current_loaded_models) - 1, -1, -1): | |
if not offload_everything: | |
free_memory = get_free_memory(device) | |
print(f"[Unload] Current free memory is {free_memory / (1024 * 1024):.2f} MB ... ") | |
if free_memory > memory_required: | |
break | |
shift_model = current_loaded_models[i] | |
if shift_model.device == device: | |
if shift_model not in keep_loaded: | |
m = current_loaded_models.pop(i) | |
print(f"[Unload] Unload model {m.model.model.__class__.__name__}") | |
m.model_unload() | |
del m | |
unloaded_model = True | |
if unloaded_model: | |
soft_empty_cache() | |
else: | |
if vram_state != VRAMState.HIGH_VRAM: | |
mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True) | |
if mem_free_torch > mem_free_total * 0.25: | |
soft_empty_cache() | |
def compute_model_gpu_memory_when_using_cpu_swap(current_free_mem, inference_memory): | |
maximum_memory_available = current_free_mem - inference_memory | |
suggestion = max( | |
maximum_memory_available / 1.3, | |
maximum_memory_available - 1024 * 1024 * 1024 * 1.25 | |
) | |
return int(max(0, suggestion)) | |
def load_models_gpu(models, memory_required=0): | |
global vram_state | |
execution_start_time = time.perf_counter() | |
extra_mem = max(minimum_inference_memory(), memory_required) | |
models_to_load = [] | |
models_already_loaded = [] | |
for x in models: | |
loaded_model = LoadedModel(x, memory_required=memory_required) | |
if loaded_model in current_loaded_models: | |
index = current_loaded_models.index(loaded_model) | |
current_loaded_models.insert(0, current_loaded_models.pop(index)) | |
models_already_loaded.append(loaded_model) | |
else: | |
if hasattr(x, "model"): | |
print(f"To load target model {x.model.__class__.__name__}") | |
models_to_load.append(loaded_model) | |
if len(models_to_load) == 0: | |
devs = set(map(lambda a: a.device, models_already_loaded)) | |
for d in devs: | |
if d != torch.device("cpu"): | |
free_memory(extra_mem, d, models_already_loaded) | |
moving_time = time.perf_counter() - execution_start_time | |
if moving_time > 0.1: | |
print(f'Memory cleanup has taken {moving_time:.2f} seconds') | |
return | |
print(f"Begin to load {len(models_to_load)} model{'s' if len(models_to_load) > 1 else ''}") | |
total_memory_required = {} | |
for loaded_model in models_to_load: | |
unload_model_clones(loaded_model.model) | |
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required() | |
for device in total_memory_required: | |
if device != torch.device("cpu"): | |
free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded) | |
for loaded_model in models_to_load: | |
model = loaded_model.model | |
torch_dev = model.load_device | |
if is_device_cpu(torch_dev): | |
vram_set_state = VRAMState.DISABLED | |
else: | |
vram_set_state = vram_state | |
model_gpu_memory_when_using_cpu_swap = -1 | |
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM): | |
model_memory = loaded_model.model_memory_required(torch_dev) | |
current_free_mem = get_free_memory(torch_dev) | |
inference_memory = minimum_inference_memory() | |
estimated_remaining_memory = current_free_mem - model_memory - inference_memory | |
print(f"[Memory Management] Current Free GPU Memory: {current_free_mem / (1024 * 1024):.2f} MB") | |
print(f"[Memory Management] Required Model Memory: {model_memory / (1024 * 1024):.2f} MB") | |
print(f"[Memory Management] Required Inference Memory: {inference_memory / (1024 * 1024):.2f} MB") | |
print(f"[Memory Management] Estimated Remaining GPU Memory: {estimated_remaining_memory / (1024 * 1024):.2f} MB") | |
if estimated_remaining_memory < 0: | |
vram_set_state = VRAMState.LOW_VRAM | |
model_gpu_memory_when_using_cpu_swap = compute_model_gpu_memory_when_using_cpu_swap(current_free_mem, inference_memory) | |
if vram_set_state == VRAMState.NO_VRAM: | |
model_gpu_memory_when_using_cpu_swap = 0 | |
loaded_model.model_load(model_gpu_memory_when_using_cpu_swap) | |
current_loaded_models.insert(0, loaded_model) | |
moving_time = time.perf_counter() - execution_start_time | |
print(f'Moving model(s) has taken {moving_time:.2f} seconds') | |
return | |
def load_model_gpu(model): | |
return load_models_gpu([model]) | |
def cleanup_models(): | |
to_delete = [] | |
for i in range(len(current_loaded_models)): | |
if sys.getrefcount(current_loaded_models[i].model) <= 2: | |
to_delete = [i] + to_delete | |
for i in to_delete: | |
x = current_loaded_models.pop(i) | |
x.model_unload() | |
del x | |
def dtype_size(dtype): | |
dtype_size = 4 | |
if dtype == torch.float16 or dtype == torch.bfloat16: | |
dtype_size = 2 | |
elif dtype == torch.float32: | |
dtype_size = 4 | |
else: | |
try: | |
dtype_size = dtype.itemsize | |
except: # Old pytorch doesn't have .itemsize | |
pass | |
return dtype_size | |
def unet_offload_device(): | |
if vram_state == VRAMState.HIGH_VRAM: | |
return get_torch_device() | |
else: | |
return torch.device("cpu") | |
def unet_inital_load_device(parameters, dtype): | |
torch_dev = get_torch_device() | |
if vram_state == VRAMState.HIGH_VRAM: | |
return torch_dev | |
cpu_dev = torch.device("cpu") | |
if ALWAYS_VRAM_OFFLOAD: | |
return cpu_dev | |
model_size = dtype_size(dtype) * parameters | |
mem_dev = get_free_memory(torch_dev) | |
mem_cpu = get_free_memory(cpu_dev) | |
if mem_dev > mem_cpu and model_size < mem_dev: | |
return torch_dev | |
else: | |
return cpu_dev | |
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): | |
if args.unet_in_bf16: | |
return torch.bfloat16 | |
if args.unet_in_fp16: | |
return torch.float16 | |
if args.unet_in_fp8_e4m3fn: | |
return torch.float8_e4m3fn | |
if args.unet_in_fp8_e5m2: | |
return torch.float8_e5m2 | |
for candidate in supported_dtypes: | |
if candidate == torch.float16: | |
if should_use_fp16(device=device, model_params=model_params, manual_cast=True): | |
return candidate | |
if candidate == torch.bfloat16: | |
if should_use_bf16(device, model_params=model_params, manual_cast=True): | |
return candidate | |
return torch.float32 | |
# None means no manual cast | |
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): | |
if weight_dtype == torch.float32: | |
return None | |
fp16_supported = should_use_fp16(inference_device, prioritize_performance=False) | |
if fp16_supported and weight_dtype == torch.float16: | |
return None | |
bf16_supported = should_use_bf16(inference_device) | |
if bf16_supported and weight_dtype == torch.bfloat16: | |
return None | |
if fp16_supported and torch.float16 in supported_dtypes: | |
return torch.float16 | |
elif bf16_supported and torch.bfloat16 in supported_dtypes: | |
return torch.bfloat16 | |
else: | |
return torch.float32 | |
def get_computation_dtype(inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): | |
for candidate in supported_dtypes: | |
if candidate == torch.float16: | |
if should_use_fp16(inference_device, prioritize_performance=False): | |
return candidate | |
if candidate == torch.bfloat16: | |
if should_use_bf16(inference_device): | |
return candidate | |
return torch.float32 | |
def text_encoder_offload_device(): | |
if args.always_gpu: | |
return get_torch_device() | |
else: | |
return torch.device("cpu") | |
def text_encoder_device(): | |
if args.always_gpu: | |
return get_torch_device() | |
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM: | |
if should_use_fp16(prioritize_performance=False): | |
return get_torch_device() | |
else: | |
return torch.device("cpu") | |
else: | |
return torch.device("cpu") | |
def text_encoder_dtype(device=None): | |
if args.clip_in_fp8_e4m3fn: | |
return torch.float8_e4m3fn | |
elif args.clip_in_fp8_e5m2: | |
return torch.float8_e5m2 | |
elif args.clip_in_fp16: | |
return torch.float16 | |
elif args.clip_in_fp32: | |
return torch.float32 | |
if is_device_cpu(device): | |
return torch.float16 | |
return torch.float16 | |
def intermediate_device(): | |
if args.always_gpu: | |
return get_torch_device() | |
else: | |
return torch.device("cpu") | |
def vae_device(): | |
if args.vae_in_cpu: | |
return torch.device("cpu") | |
return get_torch_device() | |
def vae_offload_device(): | |
if args.always_gpu: | |
return get_torch_device() | |
else: | |
return torch.device("cpu") | |
def vae_dtype(device=None, allowed_dtypes=[]): | |
global VAE_DTYPES | |
if args.vae_in_fp16: | |
return torch.float16 | |
elif args.vae_in_bf16: | |
return torch.bfloat16 | |
elif args.vae_in_fp32: | |
return torch.float32 | |
for d in allowed_dtypes: | |
if d == torch.float16 and should_use_fp16(device, prioritize_performance=False): | |
return d | |
if d in VAE_DTYPES: | |
return d | |
return VAE_DTYPES[0] | |
print(f"VAE dtype preferences: {VAE_DTYPES} -> {vae_dtype()}") | |
def get_autocast_device(dev): | |
if hasattr(dev, 'type'): | |
return dev.type | |
return "cuda" | |
def supports_dtype(device, dtype): # TODO | |
if dtype == torch.float32: | |
return True | |
if is_device_cpu(device): | |
return False | |
if dtype == torch.float16: | |
return True | |
if dtype == torch.bfloat16: | |
return True | |
return False | |
def supports_cast(device, dtype): # TODO | |
if dtype == torch.float32: | |
return True | |
if dtype == torch.float16: | |
return True | |
if directml_enabled: # TODO: test this | |
return False | |
if dtype == torch.bfloat16: | |
return True | |
if is_device_mps(device): | |
return False | |
if dtype == torch.float8_e4m3fn: | |
return True | |
if dtype == torch.float8_e5m2: | |
return True | |
return False | |
def pick_weight_dtype(dtype, fallback_dtype, device=None): | |
if dtype is None: | |
dtype = fallback_dtype | |
elif dtype_size(dtype) > dtype_size(fallback_dtype): | |
dtype = fallback_dtype | |
if not supports_cast(device, dtype): | |
dtype = fallback_dtype | |
return dtype | |
def device_supports_non_blocking(device): | |
if is_device_mps(device): | |
return False # pytorch bug? mps doesn't support non blocking | |
if is_intel_xpu(): | |
return False | |
if args.pytorch_deterministic: # TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews) | |
return False | |
if directml_enabled: | |
return False | |
return True | |
def device_should_use_non_blocking(device): | |
if not device_supports_non_blocking(device): | |
return False | |
return False | |
# return True #TODO: figure out why this causes memory issues on Nvidia and possibly others | |
def force_channels_last(): | |
if args.force_channels_last: | |
return True | |
# TODO | |
return False | |
def cast_to_device(tensor, device, dtype, copy=False): | |
device_supports_cast = False | |
if tensor.dtype == torch.float32 or tensor.dtype == torch.float16: | |
device_supports_cast = True | |
elif tensor.dtype == torch.bfloat16: | |
if hasattr(device, 'type') and device.type.startswith("cuda"): | |
device_supports_cast = True | |
elif is_intel_xpu(): | |
device_supports_cast = True | |
non_blocking = device_should_use_non_blocking(device) | |
if device_supports_cast: | |
if copy: | |
if tensor.device == device: | |
return tensor.to(dtype, copy=copy, non_blocking=non_blocking) | |
return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) | |
else: | |
return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) | |
else: | |
return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking) | |
def xformers_enabled(): | |
global directml_enabled | |
global cpu_state | |
if cpu_state != CPUState.GPU: | |
return False | |
if is_intel_xpu(): | |
return False | |
if directml_enabled: | |
return False | |
return XFORMERS_IS_AVAILABLE | |
def xformers_enabled_vae(): | |
enabled = xformers_enabled() | |
if not enabled: | |
return False | |
return XFORMERS_ENABLED_VAE | |
def pytorch_attention_enabled(): | |
global ENABLE_PYTORCH_ATTENTION | |
return ENABLE_PYTORCH_ATTENTION | |
def pytorch_attention_flash_attention(): | |
global ENABLE_PYTORCH_ATTENTION | |
if ENABLE_PYTORCH_ATTENTION: | |
# TODO: more reliable way of checking for flash attention? | |
if is_nvidia(): # pytorch flash attention only works on Nvidia | |
return True | |
if is_intel_xpu(): | |
return True | |
return False | |
def force_upcast_attention_dtype(): | |
upcast = args.force_upcast_attention | |
try: | |
if platform.mac_ver()[0] in ['14.5']: # black image bug on OSX Sonoma 14.5 | |
upcast = True | |
except: | |
pass | |
if upcast: | |
return torch.float32 | |
else: | |
return None | |
def get_free_memory(dev=None, torch_free_too=False): | |
global directml_enabled | |
if dev is None: | |
dev = get_torch_device() | |
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): | |
mem_free_total = psutil.virtual_memory().available | |
mem_free_torch = mem_free_total | |
else: | |
if directml_enabled: | |
mem_free_total = 1024 * 1024 * 1024 | |
mem_free_torch = mem_free_total | |
elif is_intel_xpu(): | |
stats = torch.xpu.memory_stats(dev) | |
mem_active = stats['active_bytes.all.current'] | |
mem_reserved = stats['reserved_bytes.all.current'] | |
mem_free_torch = mem_reserved - mem_active | |
mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved | |
mem_free_total = mem_free_xpu + mem_free_torch | |
else: | |
stats = torch.cuda.memory_stats(dev) | |
mem_active = stats['active_bytes.all.current'] | |
mem_reserved = stats['reserved_bytes.all.current'] | |
mem_free_cuda, _ = torch.cuda.mem_get_info(dev) | |
mem_free_torch = mem_reserved - mem_active | |
mem_free_total = mem_free_cuda + mem_free_torch | |
if torch_free_too: | |
return (mem_free_total, mem_free_torch) | |
else: | |
return mem_free_total | |
def cpu_mode(): | |
global cpu_state | |
return cpu_state == CPUState.CPU | |
def mps_mode(): | |
global cpu_state | |
return cpu_state == CPUState.MPS | |
def is_device_type(device, type): | |
if hasattr(device, 'type'): | |
if (device.type == type): | |
return True | |
return False | |
def is_device_cpu(device): | |
return is_device_type(device, 'cpu') | |
def is_device_mps(device): | |
return is_device_type(device, 'mps') | |
def is_device_cuda(device): | |
return is_device_type(device, 'cuda') | |
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): | |
global directml_enabled | |
if device is not None: | |
if is_device_cpu(device): | |
return False | |
if FORCE_FP16: | |
return True | |
if device is not None: | |
if is_device_mps(device): | |
return True | |
if FORCE_FP32: | |
return False | |
if directml_enabled: | |
return False | |
if mps_mode(): | |
return True | |
if cpu_mode(): | |
return False | |
if is_intel_xpu(): | |
return True | |
if torch.version.hip: | |
return True | |
props = torch.cuda.get_device_properties("cuda") | |
if props.major >= 8: | |
return True | |
if props.major < 6: | |
return False | |
fp16_works = False | |
# FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled | |
# when the model doesn't actually fit on the card | |
# TODO: actually test if GP106 and others have the same type of behavior | |
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"] | |
for x in nvidia_10_series: | |
if x in props.name.lower(): | |
fp16_works = True | |
if fp16_works or manual_cast: | |
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) | |
if (not prioritize_performance) or model_params * 4 > free_model_memory: | |
return True | |
if props.major < 7: | |
return False | |
# FP16 is just broken on these cards | |
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"] | |
for x in nvidia_16_series: | |
if x in props.name: | |
return False | |
return True | |
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): | |
if device is not None: | |
if is_device_cpu(device): # TODO ? bf16 works on CPU but is extremely slow | |
return False | |
if device is not None: | |
if is_device_mps(device): | |
return True | |
if FORCE_FP32: | |
return False | |
if directml_enabled: | |
return False | |
if mps_mode(): | |
return True | |
if cpu_mode(): | |
return False | |
if is_intel_xpu(): | |
return True | |
if device is None: | |
device = torch.device("cuda") | |
props = torch.cuda.get_device_properties(device) | |
if props.major >= 8: | |
return True | |
bf16_works = torch.cuda.is_bf16_supported() | |
if bf16_works or manual_cast: | |
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) | |
if (not prioritize_performance) or model_params * 4 > free_model_memory: | |
return True | |
return False | |
def can_install_bnb(): | |
try: | |
if not torch.cuda.is_available(): | |
return False | |
cuda_version = tuple(int(x) for x in torch.version.cuda.split('.')) | |
if cuda_version >= (11, 7): | |
return True | |
return False | |
except: | |
return False | |
def soft_empty_cache(force=False): | |
global cpu_state | |
if cpu_state == CPUState.MPS: | |
torch.mps.empty_cache() | |
elif is_intel_xpu(): | |
torch.xpu.empty_cache() | |
elif torch.cuda.is_available(): | |
if force or is_nvidia(): # This seems to make things worse on ROCm so I only do it for cuda | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
def unload_all_models(): | |
free_memory(1e30, get_torch_device()) | |
def resolve_lowvram_weight(weight, model, key): # TODO: remove | |
return weight | |
# TODO: might be cleaner to put this somewhere else | |
import threading | |
class InterruptProcessingException(Exception): | |
pass | |
interrupt_processing_mutex = threading.RLock() | |
interrupt_processing = False | |
def interrupt_current_processing(value=True): | |
global interrupt_processing | |
global interrupt_processing_mutex | |
with interrupt_processing_mutex: | |
interrupt_processing = value | |
def processing_interrupted(): | |
global interrupt_processing | |
global interrupt_processing_mutex | |
with interrupt_processing_mutex: | |
return interrupt_processing | |
def throw_exception_if_processing_interrupted(): | |
global interrupt_processing | |
global interrupt_processing_mutex | |
with interrupt_processing_mutex: | |
if interrupt_processing: | |
interrupt_processing = False | |
raise InterruptProcessingException() | |