Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
+
tokenizer = GPT2Tokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
4 |
+
model = GPT2LMHeadModel.from_pretrained("microsoft/DialoGPT-medium")
|
5 |
+
import torch
|
6 |
+
from datasets import load_dataset
|
7 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments
|
8 |
+
dataset = load_dataset("text", data_files="SAMANXA.txt")
|
9 |
+
tokenizer = GPT2Tokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
10 |
+
model = GPT2LMHeadModel.from_pretrained("microsoft/DialoGPT-medium")
|
11 |
+
def tokenize_function(examples):
|
12 |
+
return tokenizer(examples["text"], truncation=True)
|
13 |
+
|
14 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
15 |
+
training_args = TrainingArguments(
|
16 |
+
output_dir="./results",
|
17 |
+
num_train_epochs=3,
|
18 |
+
per_device_train_batch_size=16,
|
19 |
+
per_device_eval_batch_size=64,
|
20 |
+
warmup_steps=500,
|
21 |
+
weight_decay=0.01,
|
22 |
+
logging_dir="./logs",
|
23 |
+
)
|
24 |
+
|
25 |
+
trainer = Trainer(
|
26 |
+
model=model,
|
27 |
+
args=training_args,
|
28 |
+
train_dataset=tokenized_datasets["train"],
|
29 |
+
)
|
30 |
+
|
31 |
+
trainer.train()
|
32 |
+
def generate_response(message):
|
33 |
+
inputs = tokenizer.encode(message + tokenizer.eos_token, return_tensors='pt')
|
34 |
+
outputs = model.generate(inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
35 |
+
response = tokenizer.decode(outputs[:, inputs.shape[-1]:][0], skip_special_tokens=True)
|
36 |
+
|
37 |
+
return response
|
38 |
+
|
39 |
+
def generate_response(message):
|
40 |
+
if message == "hello SAMANGPT":
|
41 |
+
return "MOOOOIIIIN"
|
42 |
+
|
43 |
+
inputs = tokenizer.encode(message + tokenizer.eos_token, return_tensors='pt')
|
44 |
+
outputs = model.generate(inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
45 |
+
response = tokenizer.decode(outputs[:, inputs.shape[-1]:][0], skip_special_tokens=True)
|
46 |
+
|
47 |
+
return response
|
48 |
+
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
49 |
+
iface.launch()
|