mohsinabbas1984
commited on
Commit
•
1879130
1
Parent(s):
b073f6b
Upload 8 files
Browse files- .dockerignore +34 -0
- Dockerfile +63 -0
- ERROR +0 -0
- README.Docker.md +22 -0
- compose.yaml +49 -0
- main.py +100 -0
- requirements.txt +6 -0
- test_main.py +70 -0
.dockerignore
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Include any files or directories that you don't want to be copied to your
|
2 |
+
# container here (e.g., local build artifacts, temporary files, etc.).
|
3 |
+
#
|
4 |
+
# For more help, visit the .dockerignore file reference guide at
|
5 |
+
# https://docs.docker.com/go/build-context-dockerignore/
|
6 |
+
|
7 |
+
**/.DS_Store
|
8 |
+
**/__pycache__
|
9 |
+
**/.venv
|
10 |
+
**/.classpath
|
11 |
+
**/.dockerignore
|
12 |
+
**/.env
|
13 |
+
**/.git
|
14 |
+
**/.gitignore
|
15 |
+
**/.project
|
16 |
+
**/.settings
|
17 |
+
**/.toolstarget
|
18 |
+
**/.vs
|
19 |
+
**/.vscode
|
20 |
+
**/*.*proj.user
|
21 |
+
**/*.dbmdl
|
22 |
+
**/*.jfm
|
23 |
+
**/bin
|
24 |
+
**/charts
|
25 |
+
**/docker-compose*
|
26 |
+
**/compose*
|
27 |
+
**/Dockerfile*
|
28 |
+
**/node_modules
|
29 |
+
**/npm-debug.log
|
30 |
+
**/obj
|
31 |
+
**/secrets.dev.yaml
|
32 |
+
**/values.dev.yaml
|
33 |
+
LICENSE
|
34 |
+
README.md
|
Dockerfile
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# syntax=docker/dockerfile:1
|
2 |
+
|
3 |
+
# Comments are provided throughout this file to help you get started.
|
4 |
+
# If you need more help, visit the Dockerfile reference guide at
|
5 |
+
# https://docs.docker.com/go/dockerfile-reference/
|
6 |
+
|
7 |
+
# Want to help us make this template better? Share your feedback here: https://forms.gle/ybq9Krt8jtBL3iCk7
|
8 |
+
|
9 |
+
ARG PYTHON_VERSION=3.11.9
|
10 |
+
FROM python:${PYTHON_VERSION}-slim as base
|
11 |
+
|
12 |
+
# Prevents Python from writing pyc files.
|
13 |
+
ENV PYTHONDONTWRITEBYTECODE=1
|
14 |
+
|
15 |
+
# Keeps Python from buffering stdout and stderr to avoid situations where
|
16 |
+
# the application crashes without emitting any logs due to buffering.
|
17 |
+
ENV PYTHONUNBUFFERED=1
|
18 |
+
|
19 |
+
WORKDIR /app
|
20 |
+
|
21 |
+
# Create a non-privileged user that the app will run under.
|
22 |
+
# See https://docs.docker.com/go/dockerfile-user-best-practices/
|
23 |
+
ARG UID=10001
|
24 |
+
RUN adduser \
|
25 |
+
--disabled-password \
|
26 |
+
--gecos "" \
|
27 |
+
--home "/nonexistent" \
|
28 |
+
--shell "/sbin/nologin" \
|
29 |
+
--no-create-home \
|
30 |
+
--uid "${UID}" \
|
31 |
+
appuser
|
32 |
+
|
33 |
+
# Download dependencies as a separate step to take advantage of Docker's caching.
|
34 |
+
# Leverage a cache mount to /root/.cache/pip to speed up subsequent builds.
|
35 |
+
# Leverage a bind mount to requirements.txt to avoid having to copy them into
|
36 |
+
# into this layer.
|
37 |
+
RUN --mount=type=cache,target=/root/.cache/pip \
|
38 |
+
--mount=type=bind,source=requirements.txt,target=requirements.txt \
|
39 |
+
python -m pip install -r requirements.txt
|
40 |
+
|
41 |
+
# Switch to the non-privileged user to run the application.
|
42 |
+
USER appuser
|
43 |
+
|
44 |
+
# Set the TRANSFORMERS_CACHE environment variable
|
45 |
+
ENV TRANSFORMERS_CACHE=/tmp/.cache/huggingface
|
46 |
+
|
47 |
+
# Create the cache folder with appropriate permissions
|
48 |
+
RUN mkdir -p $TRANSFORMERS_CACHE && chmod -R 777 $TRANSFORMERS_CACHE
|
49 |
+
|
50 |
+
# Set NLTK data directory
|
51 |
+
ENV NLTK_DATA=/tmp/nltk_data
|
52 |
+
|
53 |
+
# Create the NLTK data directory with appropriate permissions
|
54 |
+
RUN mkdir -p $NLTK_DATA && chmod -R 777 $NLTK_DATA
|
55 |
+
|
56 |
+
# Copy the source code into the container.
|
57 |
+
COPY . .
|
58 |
+
|
59 |
+
# Expose the port that the application listens on.
|
60 |
+
EXPOSE 8000
|
61 |
+
|
62 |
+
# Run the application.
|
63 |
+
CMD uvicorn 'main:app' --host=0.0.0.0 --port=7860
|
ERROR
ADDED
File without changes
|
README.Docker.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Building and running your application
|
2 |
+
|
3 |
+
When you're ready, start your application by running:
|
4 |
+
`docker compose up --build`.
|
5 |
+
|
6 |
+
Your application will be available at http://localhost:7860 .
|
7 |
+
|
8 |
+
### Deploying your application to the cloud
|
9 |
+
|
10 |
+
First, build your image, e.g.: `docker build -t myapp .`.
|
11 |
+
If your cloud uses a different CPU architecture than your development
|
12 |
+
machine (e.g., you are on a Mac M1 and your cloud provider is amd64),
|
13 |
+
you'll want to build the image for that platform, e.g.:
|
14 |
+
`docker build --platform=linux/amd64 -t myapp .`.
|
15 |
+
|
16 |
+
Then, push it to your registry, e.g. `docker push myregistry.com/myapp`.
|
17 |
+
|
18 |
+
Consult Docker's [getting started](https://docs.docker.com/go/get-started-sharing/)
|
19 |
+
docs for more detail on building and pushing.
|
20 |
+
|
21 |
+
### References
|
22 |
+
* [Docker's Python guide](https://docs.docker.com/language/python/)
|
compose.yaml
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Comments are provided throughout this file to help you get started.
|
2 |
+
# If you need more help, visit the Docker Compose reference guide at
|
3 |
+
# https://docs.docker.com/go/compose-spec-reference/
|
4 |
+
|
5 |
+
# Here the instructions define your application as a service called "server".
|
6 |
+
# This service is built from the Dockerfile in the current directory.
|
7 |
+
# You can add other services your application may depend on here, such as a
|
8 |
+
# database or a cache. For examples, see the Awesome Compose repository:
|
9 |
+
# https://github.com/docker/awesome-compose
|
10 |
+
services:
|
11 |
+
server:
|
12 |
+
build:
|
13 |
+
context: .
|
14 |
+
ports:
|
15 |
+
- 8000:8000
|
16 |
+
|
17 |
+
# The commented out section below is an example of how to define a PostgreSQL
|
18 |
+
# database that your application can use. `depends_on` tells Docker Compose to
|
19 |
+
# start the database before your application. The `db-data` volume persists the
|
20 |
+
# database data between container restarts. The `db-password` secret is used
|
21 |
+
# to set the database password. You must create `db/password.txt` and add
|
22 |
+
# a password of your choosing to it before running `docker compose up`.
|
23 |
+
# depends_on:
|
24 |
+
# db:
|
25 |
+
# condition: service_healthy
|
26 |
+
# db:
|
27 |
+
# image: postgres
|
28 |
+
# restart: always
|
29 |
+
# user: postgres
|
30 |
+
# secrets:
|
31 |
+
# - db-password
|
32 |
+
# volumes:
|
33 |
+
# - db-data:/var/lib/postgresql/data
|
34 |
+
# environment:
|
35 |
+
# - POSTGRES_DB=example
|
36 |
+
# - POSTGRES_PASSWORD_FILE=/run/secrets/db-password
|
37 |
+
# expose:
|
38 |
+
# - 5432
|
39 |
+
# healthcheck:
|
40 |
+
# test: [ "CMD", "pg_isready" ]
|
41 |
+
# interval: 10s
|
42 |
+
# timeout: 5s
|
43 |
+
# retries: 5
|
44 |
+
# volumes:
|
45 |
+
# db-data:
|
46 |
+
# secrets:
|
47 |
+
# db-password:
|
48 |
+
# file: db/password.txt
|
49 |
+
|
main.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import asynccontextmanager
|
2 |
+
from fastapi import FastAPI, HTTPException
|
3 |
+
from pydantic import BaseModel, ValidationError
|
4 |
+
from fastapi.encoders import jsonable_encoder
|
5 |
+
|
6 |
+
# TEXT PREPROCESSING
|
7 |
+
# --------------------------------------------------------------------
|
8 |
+
import re
|
9 |
+
import string
|
10 |
+
import nltk
|
11 |
+
nltk.download('punkt')
|
12 |
+
nltk.download('wordnet')
|
13 |
+
nltk.download('omw-1.4')
|
14 |
+
from nltk.stem import WordNetLemmatizer
|
15 |
+
|
16 |
+
# Function to remove URLs from text
|
17 |
+
def remove_urls(text):
|
18 |
+
return re.sub(r'http[s]?://\S+', '', text)
|
19 |
+
|
20 |
+
# Function to remove punctuations from text
|
21 |
+
def remove_punctuation(text):
|
22 |
+
regular_punct = string.punctuation
|
23 |
+
return str(re.sub(r'['+regular_punct+']', '', str(text)))
|
24 |
+
|
25 |
+
# Function to convert the text into lower case
|
26 |
+
def lower_case(text):
|
27 |
+
return text.lower()
|
28 |
+
|
29 |
+
# Function to lemmatize text
|
30 |
+
def lemmatize(text):
|
31 |
+
wordnet_lemmatizer = WordNetLemmatizer()
|
32 |
+
|
33 |
+
tokens = nltk.word_tokenize(text)
|
34 |
+
lemma_txt = ''
|
35 |
+
for w in tokens:
|
36 |
+
lemma_txt = lemma_txt + wordnet_lemmatizer.lemmatize(w) + ' '
|
37 |
+
|
38 |
+
return lemma_txt
|
39 |
+
|
40 |
+
def preprocess_text(text):
|
41 |
+
# Preprocess the input text
|
42 |
+
text = remove_urls(text)
|
43 |
+
text = remove_punctuation(text)
|
44 |
+
text = lower_case(text)
|
45 |
+
text = lemmatize(text)
|
46 |
+
return text
|
47 |
+
|
48 |
+
# Load the model using FastAPI lifespan event so that the model is loaded at the beginning for efficiency
|
49 |
+
@asynccontextmanager
|
50 |
+
async def lifespan(app: FastAPI):
|
51 |
+
# Load the model from HuggingFace transformers library
|
52 |
+
from transformers import pipeline
|
53 |
+
global sentiment_task
|
54 |
+
sentiment_task = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest", tokenizer="cardiffnlp/twitter-roberta-base-sentiment-latest")
|
55 |
+
yield
|
56 |
+
# Clean up the model and release the resources
|
57 |
+
del sentiment_task
|
58 |
+
|
59 |
+
# Initialize the FastAPI app
|
60 |
+
app = FastAPI(lifespan=lifespan)
|
61 |
+
|
62 |
+
# Define the input data model
|
63 |
+
class TextInput(BaseModel):
|
64 |
+
text: str
|
65 |
+
|
66 |
+
# Define the welcome endpoint
|
67 |
+
@app.get('/')
|
68 |
+
async def welcome():
|
69 |
+
return "Welcome to our Text Classification API"
|
70 |
+
|
71 |
+
# Validate input text length
|
72 |
+
MAX_TEXT_LENGTH = 1000
|
73 |
+
|
74 |
+
# Define the sentiment analysis endpoint
|
75 |
+
@app.post('/analyze/{text}')
|
76 |
+
async def classify_text(text_input:TextInput):
|
77 |
+
try:
|
78 |
+
# Convert input data to JSON serializable dictionary
|
79 |
+
text_input_dict = jsonable_encoder(text_input)
|
80 |
+
# Validate input data using Pydantic model
|
81 |
+
text_data = TextInput(**text_input_dict) # Convert to Pydantic model
|
82 |
+
|
83 |
+
# Validate input text length
|
84 |
+
if len(text_input.text) > MAX_TEXT_LENGTH:
|
85 |
+
raise HTTPException(status_code=400, detail="Text length exceeds maximum allowed length")
|
86 |
+
elif len(text_input.text) == 0:
|
87 |
+
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
88 |
+
except ValidationError as e:
|
89 |
+
# Handle validation error
|
90 |
+
raise HTTPException(status_code=422, detail=str(e))
|
91 |
+
|
92 |
+
try:
|
93 |
+
# Perform text classification
|
94 |
+
return sentiment_task(preprocess_text(text_input.text))
|
95 |
+
except ValueError as ve:
|
96 |
+
# Handle value error
|
97 |
+
raise HTTPException(status_code=400, detail=str(ve))
|
98 |
+
except Exception as e:
|
99 |
+
# Handle other server errors
|
100 |
+
raise HTTPException(status_code=500, detail=str(e))
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
nltk
|
4 |
+
pydantic
|
5 |
+
transformers
|
6 |
+
torch
|
test_main.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi.testclient import TestClient
|
2 |
+
from main import app
|
3 |
+
from main import TextInput
|
4 |
+
from fastapi.encoders import jsonable_encoder
|
5 |
+
|
6 |
+
client = TestClient(app)
|
7 |
+
|
8 |
+
# Test the welcome endpoint
|
9 |
+
def test_welcome():
|
10 |
+
# Test the welcome endpoint
|
11 |
+
response = client.get("/")
|
12 |
+
assert response.status_code == 200
|
13 |
+
assert response.json() == "Welcome to our Text Classification API"
|
14 |
+
|
15 |
+
# Test the sentiment analysis endpoint for positive sentiment
|
16 |
+
def test_positive_sentiment():
|
17 |
+
with client:
|
18 |
+
# Define the request payload
|
19 |
+
# Initialize payload as a TextInput object
|
20 |
+
payload = TextInput(text="I love this product! It's amazing!")
|
21 |
+
|
22 |
+
# Convert TextInput object to JSON-serializable dictionary
|
23 |
+
payload_dict = jsonable_encoder(payload)
|
24 |
+
|
25 |
+
# Send a POST request to the sentiment analysis endpoint
|
26 |
+
response = client.post("/analyze/{text}", json=payload_dict)
|
27 |
+
|
28 |
+
# Assert that the response status code is 200 OK
|
29 |
+
assert response.status_code == 200
|
30 |
+
|
31 |
+
# Assert that the sentiment returned is positive
|
32 |
+
assert response.json()[0]['label'] == "positive"
|
33 |
+
|
34 |
+
# Test the sentiment analysis endpoint for negative sentiment
|
35 |
+
def test_negative_sentiment():
|
36 |
+
with client:
|
37 |
+
# Define the request payload
|
38 |
+
# Initialize payload as a TextInput object
|
39 |
+
payload = TextInput(text="I'm really disappointed with this service. It's terrible.")
|
40 |
+
|
41 |
+
# Convert TextInput object to JSON-serializable dictionary
|
42 |
+
payload_dict = jsonable_encoder(payload)
|
43 |
+
|
44 |
+
# Send a POST request to the sentiment analysis endpoint
|
45 |
+
response = client.post("/analyze/{text}", json=payload_dict)
|
46 |
+
|
47 |
+
# Assert that the response status code is 200 OK
|
48 |
+
assert response.status_code == 200
|
49 |
+
|
50 |
+
# Assert that the sentiment returned is positive
|
51 |
+
assert response.json()[0]['label'] == "negative"
|
52 |
+
|
53 |
+
# Test the sentiment analysis endpoint for neutral sentiment
|
54 |
+
def test_neutral_sentiment():
|
55 |
+
with client:
|
56 |
+
# Define the request payload
|
57 |
+
# Initialize payload as a TextInput object
|
58 |
+
payload = TextInput(text="This is a neutral statement.")
|
59 |
+
|
60 |
+
# Convert TextInput object to JSON-serializable dictionary
|
61 |
+
payload_dict = jsonable_encoder(payload)
|
62 |
+
|
63 |
+
# Send a POST request to the sentiment analysis endpoint
|
64 |
+
response = client.post("/analyze/{text}", json=payload_dict)
|
65 |
+
|
66 |
+
# Assert that the response status code is 200 OK
|
67 |
+
assert response.status_code == 200
|
68 |
+
|
69 |
+
# Assert that the sentiment returned is positive
|
70 |
+
assert response.json()[0]['label'] == "neutral"
|