Spaces:
Sleeping
Sleeping
from contextlib import asynccontextmanager | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel, ValidationError | |
from fastapi.encoders import jsonable_encoder | |
# TEXT PREPROCESSING | |
# -------------------------------------------------------------------- | |
import re | |
import string | |
import nltk | |
nltk.download('punkt') | |
nltk.download('wordnet') | |
nltk.download('omw-1.4') | |
from nltk.stem import WordNetLemmatizer | |
# Function to remove URLs from text | |
def remove_urls(text): | |
return re.sub(r'http[s]?://\S+', '', text) | |
# Function to remove punctuations from text | |
def remove_punctuation(text): | |
regular_punct = string.punctuation | |
return str(re.sub(r'['+regular_punct+']', '', str(text))) | |
# Function to convert the text into lower case | |
def lower_case(text): | |
return text.lower() | |
# Function to lemmatize text | |
def lemmatize(text): | |
wordnet_lemmatizer = WordNetLemmatizer() | |
tokens = nltk.word_tokenize(text) | |
lemma_txt = '' | |
for w in tokens: | |
lemma_txt = lemma_txt + wordnet_lemmatizer.lemmatize(w) + ' ' | |
return lemma_txt | |
def preprocess_text(text): | |
# Preprocess the input text | |
text = remove_urls(text) | |
text = remove_punctuation(text) | |
text = lower_case(text) | |
text = lemmatize(text) | |
return text | |
# Load the model using FastAPI lifespan event so that the model is loaded at the beginning for efficiency | |
async def lifespan(app: FastAPI): | |
# Load the model from HuggingFace transformers library | |
from transformers import pipeline | |
global sentiment_task | |
sentiment_task = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest", tokenizer="cardiffnlp/twitter-roberta-base-sentiment-latest") | |
yield | |
# Clean up the model and release the resources | |
del sentiment_task | |
description = """ | |
## Text Classification API | |
Upon input to this app, It will show the sentiment of the text (positive, negative, or neutral). | |
Check out the docs for the `/analyze/{text}` endpoint below to try it out! | |
""" | |
# Initialize the FastAPI app | |
app = FastAPI(lifespan=lifespan, docs_url="/", description=description) | |
# Define the input data model | |
class TextInput(BaseModel): | |
text: str | |
# Define the welcome endpoint | |
async def welcome(): | |
return "Welcome to our Docker Based Text Classification API" | |
# Validate input text length | |
MAX_TEXT_LENGTH = 1000 | |
# Define the sentiment analysis endpoint | |
async def classify_text(text_input:TextInput): | |
try: | |
# Convert input data to JSON serializable dictionary | |
text_input_dict = jsonable_encoder(text_input) | |
# Validate input data using Pydantic model | |
text_data = TextInput(**text_input_dict) # Convert to Pydantic model | |
# Validate input text length | |
if len(text_input.text) > MAX_TEXT_LENGTH: | |
raise HTTPException(status_code=400, detail="Text length exceeds maximum allowed length") | |
elif len(text_input.text) == 0: | |
raise HTTPException(status_code=400, detail="Text cannot be empty") | |
except ValidationError as e: | |
# Handle validation error | |
raise HTTPException(status_code=422, detail=str(e)) | |
try: | |
# Perform text classification | |
return sentiment_task(preprocess_text(text_input.text)) | |
except ValueError as ve: | |
# Handle value error | |
raise HTTPException(status_code=400, detail=str(ve)) | |
except Exception as e: | |
# Handle other server errors | |
raise HTTPException(status_code=500, detail=str(e)) |