Spaces:
Runtime error
Runtime error
mohsenfayyaz
commited on
Commit
·
708d3e0
1
Parent(s):
e654c3a
Delete DecompX/src/globenc_utils.py
Browse files- DecompX/src/globenc_utils.py +0 -49
DecompX/src/globenc_utils.py
DELETED
@@ -1,49 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from dataclasses import dataclass
|
3 |
-
from typing import List, Optional, Tuple, Union
|
4 |
-
|
5 |
-
@dataclass
|
6 |
-
class GlobencConfig():
|
7 |
-
include_biases: Optional[bool] = True
|
8 |
-
bias_decomp_type: Optional[str] = "absdot" # "absdot": Based on the absolute value of dot products | "norm": Based on the norm of the attribution vectors | "equal": equal decomposition | "abssim": Based on the absolute value of cosine similarites | "cls": add to cls token
|
9 |
-
include_bias_token: Optional[bool] = False # Adds an extra input token as a bias in the attribution vectors
|
10 |
-
# If the bias_decomp_type is None and include_bias_token is True then the final token in the input tokens of the attr. vectors will be the summation of the biases
|
11 |
-
# Otherwise the bias token will be decomposed with the specified decomp type
|
12 |
-
|
13 |
-
include_LN1: Optional[bool] = True
|
14 |
-
|
15 |
-
include_FFN: Optional[bool] = True
|
16 |
-
FFN_approx_type: Optional[str] = "GeLU_ZO" # "GeLU_LA": GeLU-based linear approximation | "ReLU": Using ReLU as an approximation | "GeLU_ZO": Zero-origin slope approximation
|
17 |
-
FFN_fast_mode: Optional[bool] = False
|
18 |
-
|
19 |
-
include_LN2: Optional[bool] = True
|
20 |
-
|
21 |
-
aggregation: Optional[str] = None # None: No aggregation | vector: Vector-based aggregation | rollout: Norm-based rollout aggregation
|
22 |
-
|
23 |
-
include_classifier_w_pooler: Optional[bool] = True
|
24 |
-
tanh_approx_type: Optional[str] = "ZO" # "ZO": Zero-origin slope approximation | "LA": Linear approximation
|
25 |
-
|
26 |
-
output_all_layers: Optional[bool] = False # True: Output all layers | False: Output only last layer
|
27 |
-
output_attention: Optional[str] = None # None | norm | vector | both
|
28 |
-
output_res1: Optional[str] = None # None | norm | vector | both
|
29 |
-
output_LN1: Optional[str] = None # None | norm | vector | both
|
30 |
-
output_FFN: Optional[str] = None # None | norm | vector | both
|
31 |
-
output_res2: Optional[str] = None # None | norm | vector | both
|
32 |
-
output_encoder: Optional[str] = None # None | norm | vector | both
|
33 |
-
output_aggregated: Optional[str] = None # None | norm | vector | both
|
34 |
-
output_pooler: Optional[str] = None # None | norm | vector | both
|
35 |
-
|
36 |
-
output_classifier: Optional[bool] = True
|
37 |
-
|
38 |
-
|
39 |
-
@dataclass
|
40 |
-
class GlobencOutput():
|
41 |
-
attention: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
|
42 |
-
res1: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
|
43 |
-
LN1: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
|
44 |
-
FFN: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
|
45 |
-
res2: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
|
46 |
-
encoder: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
|
47 |
-
aggregated: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
|
48 |
-
pooler: Optional[Union[Tuple[torch.Tensor], torch.Tensor]] = None
|
49 |
-
classifier: Optional[torch.Tensor] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|