mohsenfayyaz commited on
Commit
58760f7
·
1 Parent(s): e3bee57

Upload 5 files

Browse files
DecompX/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ # DecompX
DecompX/requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ scikit-learn
2
+ scipy
3
+ pandas
4
+ regex
5
+ numpy
6
+ notebook
7
+ jupyter
8
+ ipykernel
9
+ ipython
10
+ datasets==1.18.3
11
+ transformers==4.17.0
DecompX/src/globenc_utils.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from dataclasses import dataclass
3
+ from typing import List, Optional, Tuple, Union
4
+
5
+ @dataclass
6
+ class GlobencConfig():
7
+ include_biases: Optional[bool] = True
8
+ bias_decomp_type: Optional[str] = "absdot" # "absdot": Based on the absolute value of dot products | "norm": Based on the norm of the attribution vectors | "equal": equal decomposition | "abssim": Based on the absolute value of cosine similarites | "cls": add to cls token
9
+ include_bias_token: Optional[bool] = False # Adds an extra input token as a bias in the attribution vectors
10
+ # If the bias_decomp_type is None and include_bias_token is True then the final token in the input tokens of the attr. vectors will be the summation of the biases
11
+ # Otherwise the bias token will be decomposed with the specified decomp type
12
+
13
+ include_LN1: Optional[bool] = True
14
+
15
+ include_FFN: Optional[bool] = True
16
+ FFN_approx_type: Optional[str] = "GeLU_ZO" # "GeLU_LA": GeLU-based linear approximation | "ReLU": Using ReLU as an approximation | "GeLU_ZO": Zero-origin slope approximation
17
+ FFN_fast_mode: Optional[bool] = False
18
+
19
+ include_LN2: Optional[bool] = True
20
+
21
+ aggregation: Optional[str] = None # None: No aggregation | vector: Vector-based aggregation | rollout: Norm-based rollout aggregation
22
+
23
+ include_classifier_w_pooler: Optional[bool] = True
24
+ tanh_approx_type: Optional[str] = "ZO" # "ZO": Zero-origin slope approximation | "LA": Linear approximation
25
+
26
+ output_all_layers: Optional[bool] = False # True: Output all layers | False: Output only last layer
27
+ output_attention: Optional[str] = None # None | norm | vector | both
28
+ output_res1: Optional[str] = None # None | norm | vector | both
29
+ output_LN1: Optional[str] = None # None | norm | vector | both
30
+ output_FFN: Optional[str] = None # None | norm | vector | both
31
+ output_res2: Optional[str] = None # None | norm | vector | both
32
+ output_encoder: Optional[str] = None # None | norm | vector | both
33
+ output_aggregated: Optional[str] = None # None | norm | vector | both
34
+ output_pooler: Optional[str] = None # None | norm | vector | both
35
+
36
+ output_classifier: Optional[bool] = True
37
+
38
+
39
+ @dataclass
40
+ class GlobencOutput():
41
+ attention: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
42
+ res1: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
43
+ LN1: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
44
+ FFN: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
45
+ res2: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
46
+ encoder: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
47
+ aggregated: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
48
+ pooler: Optional[Union[Tuple[torch.Tensor], torch.Tensor]] = None
49
+ classifier: Optional[torch.Tensor] = None
DecompX/src/modeling_bert.py ADDED
The diff for this file is too large to render. See raw diff
 
DecompX/src/modeling_roberta.py ADDED
The diff for this file is too large to render. See raw diff