Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch BERT model.""" | |
import math | |
import os | |
import warnings | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from packaging import version | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from .decompx_utils import DecompXConfig, DecompXOutput | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPastAndCrossAttentions, | |
BaseModelOutputWithPoolingAndCrossAttentions, | |
CausalLMOutputWithCrossAttentions, | |
MaskedLMOutput, | |
MultipleChoiceModelOutput, | |
NextSentencePredictorOutput, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from transformers.modeling_utils import ( | |
PreTrainedModel, | |
apply_chunking_to_forward, | |
find_pruneable_heads_and_indices, | |
prune_linear_layer, | |
) | |
from transformers.utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from transformers.models.bert.configuration_bert import BertConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "bert-base-uncased" | |
_CONFIG_FOR_DOC = "BertConfig" | |
_TOKENIZER_FOR_DOC = "BertTokenizer" | |
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"bert-base-uncased", | |
"bert-large-uncased", | |
"bert-base-cased", | |
"bert-large-cased", | |
"bert-base-multilingual-uncased", | |
"bert-base-multilingual-cased", | |
"bert-base-chinese", | |
"bert-base-german-cased", | |
"bert-large-uncased-whole-word-masking", | |
"bert-large-cased-whole-word-masking", | |
"bert-large-uncased-whole-word-masking-finetuned-squad", | |
"bert-large-cased-whole-word-masking-finetuned-squad", | |
"bert-base-cased-finetuned-mrpc", | |
"bert-base-german-dbmdz-cased", | |
"bert-base-german-dbmdz-uncased", | |
"cl-tohoku/bert-base-japanese", | |
"cl-tohoku/bert-base-japanese-whole-word-masking", | |
"cl-tohoku/bert-base-japanese-char", | |
"cl-tohoku/bert-base-japanese-char-whole-word-masking", | |
"TurkuNLP/bert-base-finnish-cased-v1", | |
"TurkuNLP/bert-base-finnish-uncased-v1", | |
"wietsedv/bert-base-dutch-cased", | |
# See all BERT models at https://huggingface.co/models?filter=bert | |
] | |
def load_tf_weights_in_bert(model, config, tf_checkpoint_path): | |
"""Load tf checkpoints in a pytorch model.""" | |
try: | |
import re | |
import numpy as np | |
import tensorflow as tf | |
except ImportError: | |
logger.error( | |
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions." | |
) | |
raise | |
tf_path = os.path.abspath(tf_checkpoint_path) | |
logger.info(f"Converting TensorFlow checkpoint from {tf_path}") | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
logger.info(f"Loading TF weight {name} with shape {shape}") | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array) | |
for name, array in zip(names, arrays): | |
name = name.split("/") | |
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
# which are not required for using pretrained model | |
if any( | |
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] | |
for n in name | |
): | |
logger.info(f"Skipping {'/'.join(name)}") | |
continue | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): | |
scope_names = re.split(r"_(\d+)", m_name) | |
else: | |
scope_names = [m_name] | |
if scope_names[0] == "kernel" or scope_names[0] == "gamma": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | |
pointer = getattr(pointer, "bias") | |
elif scope_names[0] == "output_weights": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "squad": | |
pointer = getattr(pointer, "classifier") | |
else: | |
try: | |
pointer = getattr(pointer, scope_names[0]) | |
except AttributeError: | |
logger.info(f"Skipping {'/'.join(name)}") | |
continue | |
if len(scope_names) >= 2: | |
num = int(scope_names[1]) | |
pointer = pointer[num] | |
if m_name[-11:] == "_embeddings": | |
pointer = getattr(pointer, "weight") | |
elif m_name == "kernel": | |
array = np.transpose(array) | |
try: | |
if pointer.shape != array.shape: | |
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
logger.info(f"Initialize PyTorch weight {name}") | |
pointer.data = torch.from_numpy(array) | |
return model | |
def output_builder(input_vector, output_mode): | |
if output_mode is None: | |
return None | |
elif output_mode == "vector": | |
return (input_vector,) | |
elif output_mode == "norm": | |
return (torch.norm(input_vector, dim=-1),) | |
elif output_mode == "both": | |
return ((torch.norm(input_vector, dim=-1), input_vector),) | |
elif output_mode == "distance_based": | |
recomposed_vectors = torch.sum(input_vector, dim=-2, keepdim=True) | |
importance_matrix = -torch.nn.functional.pairwise_distance(input_vector, recomposed_vectors, p=1) | |
norm_y = torch.norm(recomposed_vectors, dim=-1, p=1) | |
maxed = torch.maximum(torch.zeros(1, device=norm_y.device), norm_y + importance_matrix) | |
return (maxed / (torch.sum(maxed, dim=-2, keepdim=True) + 1e-12),) | |
class BertEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings.""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) | |
if version.parse(torch.__version__) > version.parse("1.6.0"): | |
self.register_buffer( | |
"token_type_ids", | |
torch.zeros(self.position_ids.size(), dtype=torch.long), | |
persistent=False, | |
) | |
def forward( | |
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 | |
): | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
if position_ids is None: | |
position_ids = self.position_ids[:, past_key_values_length: seq_length + past_key_values_length] | |
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs | |
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves | |
# issue #5664 | |
if token_type_ids is None: | |
if hasattr(self, "token_type_ids"): | |
buffered_token_type_ids = self.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + token_type_embeddings | |
if self.position_embedding_type == "absolute": | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings += position_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class BertSelfAttention(nn.Module): | |
def __init__(self, config, position_embedding_type=None): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.position_embedding_type = position_embedding_type or getattr( | |
config, "position_embedding_type", "absolute" | |
) | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
self.max_position_embeddings = config.max_position_embeddings | |
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) | |
self.is_decoder = config.is_decoder | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def transpose_for_scores_for_decomposed(self, x): | |
# x: (B, N, N, H*V) | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
# x: (B, N, N, H, V) | |
x = x.view(new_x_shape) | |
# x: (B, H, N, N, V) | |
return x.permute(0, 3, 1, 2, 4) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attribution_vectors: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
output_attentions: Optional[bool] = False, | |
decompx_ready: Optional[bool] = None, # added by Fayyaz / Modarressi | |
) -> Tuple[torch.Tensor]: | |
mixed_query_layer = self.query(hidden_states) | |
# If this is instantiated as a cross-attention module, the keys | |
# and values come from an encoder; the attention mask needs to be | |
# such that the encoder's padding tokens are not attended to. | |
is_cross_attention = encoder_hidden_states is not None | |
decomposed_value_layer = None | |
if is_cross_attention and past_key_value is not None: | |
# reuse k,v, cross_attentions | |
key_layer = past_key_value[0] | |
value_layer = past_key_value[1] | |
attention_mask = encoder_attention_mask | |
elif is_cross_attention: | |
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) | |
attention_mask = encoder_attention_mask | |
elif past_key_value is not None: | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) | |
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) | |
else: | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
if attribution_vectors is not None: | |
decomposed_value_layer = torch.einsum("bijd,vd->bijv", attribution_vectors, self.value.weight) | |
decomposed_value_layer = self.transpose_for_scores_for_decomposed(decomposed_value_layer) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_layer, value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
seq_length = hidden_states.size()[1] | |
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) | |
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) | |
distance = position_ids_l - position_ids_r | |
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) | |
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility | |
if self.position_embedding_type == "relative_key": | |
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores | |
elif self.position_embedding_type == "relative_key_query": | |
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(new_context_layer_shape) | |
# added by Fayyaz / Modarressi | |
# ------------------------------- | |
if decompx_ready: | |
outputs = (context_layer, attention_probs, value_layer, decomposed_value_layer) | |
return outputs | |
# ------------------------------- | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
if self.is_decoder: | |
outputs = outputs + (past_key_value,) | |
return outputs | |
class BertSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, | |
decompx_ready=False): # added by Fayyaz / Modarressi | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
# hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
pre_ln_states = hidden_states + input_tensor # added by Fayyaz / Modarressi | |
post_ln_states = self.LayerNorm(pre_ln_states) # added by Fayyaz / Modarressi | |
# added by Fayyaz / Modarressi | |
if decompx_ready: | |
return post_ln_states, pre_ln_states | |
else: | |
return post_ln_states | |
class BertAttention(nn.Module): | |
def __init__(self, config, position_embedding_type=None): | |
super().__init__() | |
self.self = BertSelfAttention(config, position_embedding_type=position_embedding_type) | |
self.output = BertSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attribution_vectors: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
output_attentions: Optional[bool] = False, | |
decompx_ready: Optional[bool] = None, # added by Fayyaz / Modarressi | |
) -> Tuple[torch.Tensor]: | |
self_outputs = self.self( | |
hidden_states, | |
attribution_vectors, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
past_key_value, | |
output_attentions, | |
decompx_ready=decompx_ready, # added by Fayyaz / Modarressi | |
) | |
attention_output = self.output( | |
self_outputs[0], | |
hidden_states, | |
decompx_ready=decompx_ready, # added by Goro Kobayashi (Edited by Fayyaz / Modarressi) | |
) | |
# Added by Fayyaz / Modarressi | |
# ------------------------------- | |
if decompx_ready: | |
_, attention_probs, value_layer, decomposed_value_layer = self_outputs | |
attention_output, pre_ln_states = attention_output | |
outputs = (attention_output, attention_probs,) + (value_layer, decomposed_value_layer, pre_ln_states) # add attentions and norms if we output them | |
return outputs | |
# ------------------------------- | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class BertIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor, decompx_ready: Optional[bool] = False) -> torch.Tensor: | |
pre_act_hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(pre_act_hidden_states) | |
if decompx_ready: | |
return hidden_states, pre_act_hidden_states | |
return hidden_states, None | |
class BertOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, decompx_ready: Optional[bool] = False): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
# hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
# return hidden_states | |
# Added by Fayyaz / Modarressi | |
# ------------------------------- | |
pre_ln_states = hidden_states + input_tensor | |
hidden_states = self.LayerNorm(pre_ln_states) | |
if decompx_ready: | |
return hidden_states, pre_ln_states | |
return hidden_states, None | |
# ------------------------------- | |
class BertLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = BertAttention(config) | |
self.is_decoder = config.is_decoder | |
self.add_cross_attention = config.add_cross_attention | |
if self.add_cross_attention: | |
if not self.is_decoder: | |
raise ValueError(f"{self} should be used as a decoder model if cross attention is added") | |
self.crossattention = BertAttention(config, position_embedding_type="absolute") | |
self.intermediate = BertIntermediate(config) | |
self.output = BertOutput(config) | |
self.similarity_fn = torch.nn.CosineSimilarity(dim=-1) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
def bias_decomposer(self, bias, attribution_vectors, bias_decomp_type="absdot"): | |
# Decomposes the input bias based on similarity to the attribution vectors | |
# Args: | |
# bias: a bias vector (all_head_size) | |
# attribution_vectors: the attribution vectors from token j to i (b, i, j, all_head_size) :: (batch, seq_length, seq_length, all_head_size) | |
if bias_decomp_type == "absdot": | |
weights = torch.abs(torch.einsum("bskd,d->bsk", attribution_vectors, bias)) | |
elif bias_decomp_type == "abssim": | |
weights = torch.abs(torch.nn.functional.cosine_similarity(attribution_vectors, bias, dim=-1)) | |
weights = (torch.norm(attribution_vectors, dim=-1) != 0) * weights | |
elif bias_decomp_type == "norm": | |
weights = torch.norm(attribution_vectors, dim=-1) | |
elif bias_decomp_type == "equal": | |
weights = (torch.norm(attribution_vectors, dim=-1) != 0) * 1.0 | |
elif bias_decomp_type == "cls": | |
weights = torch.zeros(attribution_vectors.shape[:-1], device=attribution_vectors.device) | |
weights[:,:,0] = 1.0 | |
elif bias_decomp_type == "dot": | |
weights = torch.einsum("bskd,d->bsk", attribution_vectors, bias) | |
elif bias_decomp_type == "biastoken": | |
attrib_shape = attribution_vectors.shape | |
if attrib_shape[1] == attrib_shape[2]: | |
attribution_vectors = torch.concat([attribution_vectors, torch.zeros((attrib_shape[0], attrib_shape[1], 1, attrib_shape[3]), device=attribution_vectors.device)], dim=-2) | |
attribution_vectors[:,:,-1] = attribution_vectors[:,:,-1] + bias | |
return attribution_vectors | |
weights = weights / (weights.sum(dim=-1, keepdim=True) + 1e-12) | |
weighted_bias = torch.matmul(weights.unsqueeze(dim=-1), bias.unsqueeze(dim=0)) | |
return attribution_vectors + weighted_bias | |
def ln_decomposer(self, attribution_vectors, pre_ln_states, gamma, beta, eps, include_biases=True, bias_decomp_type="absdot"): | |
mean = pre_ln_states.mean(-1, keepdim=True) # (batch, seq_len, 1) m(y=Σy_j) | |
var = (pre_ln_states - mean).pow(2).mean(-1, keepdim=True).unsqueeze(dim=2) # (batch, seq_len, 1, 1) s(y) | |
each_mean = attribution_vectors.mean(-1, keepdim=True) # (batch, seq_len, seq_len, 1) m(y_j) | |
normalized_layer = torch.div(attribution_vectors - each_mean, | |
(var + eps) ** (1 / 2)) # (batch, seq_len, seq_len, all_head_size) | |
post_ln_layer = torch.einsum('bskd,d->bskd', normalized_layer, | |
gamma) # (batch, seq_len, seq_len, all_head_size) | |
if include_biases: | |
return self.bias_decomposer(beta, post_ln_layer, bias_decomp_type=bias_decomp_type) | |
else: | |
return post_ln_layer | |
def gelu_linear_approximation(self, intermediate_hidden_states, intermediate_output): | |
def phi(x): | |
return (1 + torch.erf(x / math.sqrt(2))) / 2. | |
def normal_pdf(x): | |
return torch.exp(-(x**2) / 2) / math.sqrt(2. * math.pi) | |
def gelu_deriv(x): | |
return phi(x)+x*normal_pdf(x) | |
m = gelu_deriv(intermediate_hidden_states) | |
b = intermediate_output - m * intermediate_hidden_states | |
return m, b | |
def gelu_decomposition(self, attribution_vectors, intermediate_hidden_states, intermediate_output, bias_decomp_type): | |
m, b = self.gelu_linear_approximation(intermediate_hidden_states, intermediate_output) | |
mx = attribution_vectors * m.unsqueeze(dim=-2) | |
if bias_decomp_type == "absdot": | |
weights = torch.abs(torch.einsum("bskl,bsl->bsk", mx, b)) | |
elif bias_decomp_type == "abssim": | |
weights = torch.abs(torch.nn.functional.cosine_similarity(mx, b)) | |
weights = (torch.norm(mx, dim=-1) != 0) * weights | |
elif bias_decomp_type == "norm": | |
weights = torch.norm(mx, dim=-1) | |
elif bias_decomp_type == "equal": | |
weights = (torch.norm(mx, dim=-1) != 0) * 1.0 | |
elif bias_decomp_type == "cls": | |
weights = torch.zeros(mx.shape[:-1], device=mx.device) | |
weights[:,:,0] = 1.0 | |
weights = weights / (weights.sum(dim=-1, keepdim=True) + 1e-12) | |
weighted_bias = torch.einsum("bsl,bsk->bskl", b, weights) | |
return mx + weighted_bias | |
def gelu_zo_decomposition(self, attribution_vectors, intermediate_hidden_states, intermediate_output): | |
m = intermediate_output / (intermediate_hidden_states + 1e-12) | |
mx = attribution_vectors * m.unsqueeze(dim=-2) | |
return mx | |
def ffn_decomposer(self, attribution_vectors, intermediate_hidden_states, intermediate_output, include_biases=True, approximation_type="GeLU_LA", bias_decomp_type="absdot"): | |
post_first_layer = torch.einsum("ld,bskd->bskl", self.intermediate.dense.weight, attribution_vectors) | |
if include_biases: | |
post_first_layer = self.bias_decomposer(self.intermediate.dense.bias, post_first_layer, bias_decomp_type=bias_decomp_type) | |
if approximation_type == "ReLU": | |
mask_for_gelu_approx = (intermediate_hidden_states > 0) | |
post_act_first_layer = torch.einsum("bskl, bsl->bskl", post_first_layer, mask_for_gelu_approx) | |
post_act_first_layer = post_first_layer * mask_for_gelu_approx.unsqueeze(dim=-2) | |
elif approximation_type == "GeLU_LA": | |
post_act_first_layer = self.gelu_decomposition(post_first_layer, intermediate_hidden_states, intermediate_output, bias_decomp_type=bias_decomp_type) | |
elif approximation_type == "GeLU_ZO": | |
post_act_first_layer = self.gelu_zo_decomposition(post_first_layer, intermediate_hidden_states, intermediate_output) | |
post_second_layer = torch.einsum("bskl, dl->bskd", post_act_first_layer, self.output.dense.weight) | |
if include_biases: | |
post_second_layer = self.bias_decomposer(self.output.dense.bias, post_second_layer, bias_decomp_type=bias_decomp_type) | |
return post_second_layer | |
def ffn_decomposer_fast(self, attribution_vectors, intermediate_hidden_states, intermediate_output, include_biases=True, approximation_type="GeLU_LA", bias_decomp_type="absdot"): | |
if approximation_type == "ReLU": | |
theta = (intermediate_hidden_states > 0) | |
elif approximation_type == "GeLU_ZO": | |
theta = intermediate_output / (intermediate_hidden_states + 1e-12) | |
scaled_W1 = torch.einsum("bsl,ld->bsld", theta, self.intermediate.dense.weight) | |
W_equiv = torch.einsum("bsld, zl->bszd", scaled_W1, self.output.dense.weight) | |
post_ffn_layer = torch.einsum("bszd,bskd->bskz", W_equiv, attribution_vectors) | |
if include_biases: | |
scaled_b1 = torch.einsum("bsl,l->bsl", theta, self.intermediate.dense.bias) | |
b_equiv = torch.einsum("bsl, dl->bsd", scaled_b1, self.output.dense.weight) | |
b_equiv = b_equiv + self.output.dense.bias | |
if bias_decomp_type == "absdot": | |
weights = torch.abs(torch.einsum("bskd,bsd->bsk", post_ffn_layer, b_equiv)) | |
elif bias_decomp_type == "abssim": | |
weights = torch.abs(torch.nn.functional.cosine_similarity(post_ffn_layer, b_equiv)) | |
weights = (torch.norm(post_ffn_layer, dim=-1) != 0) * weights | |
elif bias_decomp_type == "norm": | |
weights = torch.norm(post_ffn_layer, dim=-1) | |
elif bias_decomp_type == "equal": | |
weights = (torch.norm(post_ffn_layer, dim=-1) != 0) * 1.0 | |
weights = weights / (weights.sum(dim=-1, keepdim=True) + 1e-12) | |
weighted_bias = torch.einsum("bsd,bsk->bskd", b_equiv, weights) | |
post_ffn_layer = post_ffn_layer + weighted_bias | |
return post_ffn_layer | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attribution_vectors: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
output_attentions: Optional[bool] = False, | |
decompx_config: Optional[DecompXConfig] = None, # added by Fayyaz / Modarressi | |
) -> Tuple[torch.Tensor]: | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
# self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
# self_attention_outputs = self.attention( | |
# hidden_states, | |
# attention_mask, | |
# head_mask, | |
# output_attentions=output_attentions, | |
# past_key_value=self_attn_past_key_value, | |
# ) | |
decompx_ready = decompx_config is not None | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attribution_vectors, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
decompx_ready=decompx_ready, | |
) # changed by Goro Kobayashi | |
attention_output = self_attention_outputs[0] | |
# if decoder, the last output is tuple of self-attn cache | |
if self.is_decoder: | |
outputs = self_attention_outputs[1:-1] | |
present_key_value = self_attention_outputs[-1] | |
else: | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
cross_attn_present_key_value = None | |
if self.is_decoder and encoder_hidden_states is not None: | |
if not hasattr(self, "crossattention"): | |
raise ValueError( | |
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" | |
) | |
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple | |
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
cross_attention_outputs = self.crossattention( | |
attention_output, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
cross_attn_past_key_value, | |
output_attentions, | |
) | |
attention_output = cross_attention_outputs[0] | |
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights | |
# add cross-attn cache to positions 3,4 of present_key_value tuple | |
cross_attn_present_key_value = cross_attention_outputs[-1] | |
present_key_value = present_key_value + cross_attn_present_key_value | |
# layer_output = apply_chunking_to_forward( | |
# self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
# ) | |
# Added by Fayyaz / Modarressi | |
# ------------------------------- | |
bias_decomp_type = "biastoken" if decompx_config.include_bias_token else decompx_config.bias_decomp_type | |
intermediate_output, pre_act_hidden_states = self.intermediate(attention_output, decompx_ready=decompx_ready) | |
layer_output, pre_ln2_states = self.output(intermediate_output, attention_output, decompx_ready=decompx_ready) | |
if decompx_ready: | |
attention_probs, value_layer, decomposed_value_layer, pre_ln_states = outputs | |
headmixing_weight = self.attention.output.dense.weight.view(self.all_head_size, self.num_attention_heads, | |
self.attention_head_size) | |
if decomposed_value_layer is None or decompx_config.aggregation != "vector": | |
transformed_layer = torch.einsum('bhsv,dhv->bhsd', value_layer, headmixing_weight) # V * W^o (z=(qk)v) | |
# Make weighted vectors αf(x) from transformed vectors (transformed_layer) | |
# and attention weights (attentions): | |
# (batch, num_heads, seq_length, seq_length, all_head_size) | |
weighted_layer = torch.einsum('bhks,bhsd->bhksd', attention_probs, | |
transformed_layer) # attention_probs(Q*K^t) * V * W^o | |
# Sum each weighted vectors αf(x) over all heads: | |
# (batch, seq_length, seq_length, all_head_size) | |
summed_weighted_layer = weighted_layer.sum(dim=1) # sum over heads | |
# Make residual matrix (batch, seq_length, seq_length, all_head_size) | |
hidden_shape = hidden_states.size() # (batch, seq_length, all_head_size) | |
device = hidden_states.device | |
residual = torch.einsum('sk,bsd->bskd', torch.eye(hidden_shape[1]).to(device), | |
hidden_states) # diagonal representations (hidden states) | |
# Make matrix of summed weighted vector + residual vectors | |
residual_weighted_layer = summed_weighted_layer + residual | |
accumulated_bias = self.attention.output.dense.bias | |
else: | |
transformed_layer = torch.einsum('bhsqv,dhv->bhsqd', decomposed_value_layer, headmixing_weight) | |
weighted_layer = torch.einsum('bhks,bhsqd->bhkqd', attention_probs, | |
transformed_layer) # attention_probs(Q*K^t) * V * W^o | |
summed_weighted_layer = weighted_layer.sum(dim=1) # sum over heads | |
residual_weighted_layer = summed_weighted_layer + attribution_vectors | |
accumulated_bias = torch.matmul(self.attention.output.dense.weight, self.attention.self.value.bias) + self.attention.output.dense.bias | |
if decompx_config.include_biases: | |
residual_weighted_layer = self.bias_decomposer(accumulated_bias, residual_weighted_layer, bias_decomp_type) | |
if decompx_config.include_LN1: | |
post_ln_layer = self.ln_decomposer( | |
attribution_vectors=residual_weighted_layer, | |
pre_ln_states=pre_ln_states, | |
gamma=self.attention.output.LayerNorm.weight.data, | |
beta=self.attention.output.LayerNorm.bias.data, | |
eps=self.attention.output.LayerNorm.eps, | |
include_biases=decompx_config.include_biases, | |
bias_decomp_type=bias_decomp_type | |
) | |
else: | |
post_ln_layer = residual_weighted_layer | |
if decompx_config.include_FFN: | |
post_ffn_layer = self.ffn_decomposer_fast if decompx_config.FFN_fast_mode else self.ffn_decomposer( | |
attribution_vectors=post_ln_layer, | |
intermediate_hidden_states=pre_act_hidden_states, | |
intermediate_output=intermediate_output, | |
approximation_type=decompx_config.FFN_approx_type, | |
include_biases=decompx_config.include_biases, | |
bias_decomp_type=bias_decomp_type | |
) | |
pre_ln2_layer = post_ln_layer + post_ffn_layer | |
else: | |
pre_ln2_layer = post_ln_layer | |
post_ffn_layer = None | |
if decompx_config.include_LN2: | |
post_ln2_layer = self.ln_decomposer( | |
attribution_vectors=pre_ln2_layer, | |
pre_ln_states=pre_ln2_states, | |
gamma=self.output.LayerNorm.weight.data, | |
beta=self.output.LayerNorm.bias.data, | |
eps=self.output.LayerNorm.eps, | |
include_biases=decompx_config.include_biases, | |
bias_decomp_type=bias_decomp_type | |
) | |
else: | |
post_ln2_layer = pre_ln2_layer | |
new_outputs = DecompXOutput( | |
attention=output_builder(summed_weighted_layer, decompx_config.output_attention), | |
res1=output_builder(residual_weighted_layer, decompx_config.output_res1), | |
LN1=output_builder(post_ln_layer, decompx_config.output_res2), | |
FFN=output_builder(post_ffn_layer, decompx_config.output_FFN), | |
res2=output_builder(pre_ln2_layer, decompx_config.output_res2), | |
encoder=output_builder(post_ln2_layer, "both") | |
) | |
return (layer_output,) + (new_outputs,) | |
# ------------------------------- | |
outputs = (layer_output,) + outputs | |
# if decoder, return the attn key/values as the last output | |
if self.is_decoder: | |
outputs = outputs + (present_key_value,) | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
class BertEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = False, | |
output_hidden_states: Optional[bool] = False, | |
return_dict: Optional[bool] = True, | |
decompx_config: Optional[DecompXConfig] = None, # added by Fayyaz / Modarressi | |
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None | |
next_decoder_cache = () if use_cache else None | |
aggregated_encoder_norms = None # added by Fayyaz / Modarressi | |
aggregated_encoder_vectors = None # added by Fayyaz / Modarressi | |
# -- added by Fayyaz / Modarressi | |
if decompx_config and decompx_config.output_all_layers: | |
all_decompx_outputs = DecompXOutput( | |
attention=() if decompx_config.output_attention else None, | |
res1=() if decompx_config.output_res1 else None, | |
LN1=() if decompx_config.output_LN1 else None, | |
FFN=() if decompx_config.output_LN1 else None, | |
res2=() if decompx_config.output_res2 else None, | |
encoder=() if decompx_config.output_encoder else None, | |
aggregated=() if decompx_config.output_aggregated and decompx_config.aggregation else None, | |
) | |
else: | |
all_decompx_outputs = None | |
# -- added by Fayyaz / Modarressi | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
past_key_value = past_key_values[i] if past_key_values is not None else None | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, past_key_value, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
aggregated_encoder_vectors, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
past_key_value, | |
output_attentions, | |
decompx_config # added by Fayyaz / Modarressi | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[-1],) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if self.config.add_cross_attention: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) | |
# added by Fayyaz / Modarressi | |
if decompx_config: | |
decompx_output = layer_outputs[1] | |
if decompx_config.aggregation == "rollout": | |
if decompx_config.include_classifier_w_pooler: | |
raise Exception("Classifier and pooler could be included in vector aggregation mode") | |
encoder_norms = decompx_output.encoder[0][0] | |
if aggregated_encoder_norms is None: | |
aggregated_encoder_norms = encoder_norms * torch.exp(attention_mask).view((-1, attention_mask.shape[-1], 1)) | |
else: | |
aggregated_encoder_norms = torch.einsum("ijk,ikm->ijm", encoder_norms, aggregated_encoder_norms) | |
if decompx_config.output_aggregated == "norm": | |
decompx_output.aggregated = (aggregated_encoder_norms,) | |
elif decompx_config.output_aggregated is not None: | |
raise Exception("Rollout aggregated values are only available in norms. Set output_aggregated to 'norm'.") | |
elif decompx_config.aggregation == "vector": | |
aggregated_encoder_vectors = decompx_output.encoder[0][1] | |
if decompx_config.include_classifier_w_pooler: | |
decompx_output.aggregated = (aggregated_encoder_vectors,) | |
else: | |
decompx_output.aggregated = output_builder(aggregated_encoder_vectors, decompx_config.output_aggregated) | |
decompx_output.encoder = output_builder(decompx_output.encoder[0][1], decompx_config.output_encoder) | |
if decompx_config.output_all_layers: | |
all_decompx_outputs.attention = all_decompx_outputs.attention + decompx_output.attention if decompx_config.output_attention else None | |
all_decompx_outputs.res1 = all_decompx_outputs.res1 + decompx_output.res1 if decompx_config.output_res1 else None | |
all_decompx_outputs.LN1 = all_decompx_outputs.LN1 + decompx_output.LN1 if decompx_config.output_LN1 else None | |
all_decompx_outputs.FFN = all_decompx_outputs.FFN + decompx_output.FFN if decompx_config.output_FFN else None | |
all_decompx_outputs.res2 = all_decompx_outputs.res2 + decompx_output.res2 if decompx_config.output_res2 else None | |
all_decompx_outputs.encoder = all_decompx_outputs.encoder + decompx_output.encoder if decompx_config.output_encoder else None | |
if decompx_config.include_classifier_w_pooler and decompx_config.aggregation == "vector": | |
all_decompx_outputs.aggregated = all_decompx_outputs.aggregated + output_builder(aggregated_encoder_vectors, decompx_config.output_aggregated) if decompx_config.output_aggregated else None | |
else: | |
all_decompx_outputs.aggregated = all_decompx_outputs.aggregated + decompx_output.aggregated if decompx_config.output_aggregated else None | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
next_decoder_cache, | |
all_hidden_states, | |
all_self_attentions, | |
all_cross_attentions, | |
decompx_output if decompx_config else None, | |
all_decompx_outputs | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_decoder_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
class BertPooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states: torch.Tensor, decompx_ready=False) -> torch.Tensor: | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pre_pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pre_pooled_output) | |
if decompx_ready: | |
return pooled_output, pre_pooled_output | |
return pooled_output | |
class BertPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
if isinstance(config.hidden_act, str): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class BertLMPredictionHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.transform = BertPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
self.decoder.bias = self.bias | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) | |
return hidden_states | |
class BertOnlyMLMHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.predictions = BertLMPredictionHead(config) | |
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: | |
prediction_scores = self.predictions(sequence_output) | |
return prediction_scores | |
class BertOnlyNSPHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, pooled_output): | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return seq_relationship_score | |
class BertPreTrainingHeads(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.predictions = BertLMPredictionHead(config) | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, sequence_output, pooled_output): | |
prediction_scores = self.predictions(sequence_output) | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return prediction_scores, seq_relationship_score | |
class BertPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = BertConfig | |
load_tf_weights = load_tf_weights_in_bert | |
base_model_prefix = "bert" | |
supports_gradient_checkpointing = True | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, BertEncoder): | |
module.gradient_checkpointing = value | |
class BertForPreTrainingOutput(ModelOutput): | |
""" | |
Output type of [`BertForPreTraining`]. | |
Args: | |
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
Total loss as the sum of the masked language modeling loss and the next sequence prediction | |
(classification) loss. | |
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): | |
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation | |
before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
prediction_logits: torch.FloatTensor = None | |
seq_relationship_logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
BERT_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`BertConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
BERT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class BertModel(BertPreTrainedModel): | |
""" | |
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of | |
cross-attention is added between the self-attention layers, following the architecture described in [Attention is | |
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, | |
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. | |
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set | |
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and | |
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. | |
""" | |
def __init__(self, config, add_pooling_layer=True): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = BertEmbeddings(config) | |
self.encoder = BertEncoder(config) | |
self.pooler = BertPooler(config) if add_pooling_layer else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def bias_decomposer(self, bias, attribution_vectors, bias_decomp_type="absdot"): | |
# Decomposes the input bias based on similarity to the attribution vectors | |
# Args: | |
# bias: a bias vector (all_head_size) | |
# attribution_vectors: the attribution vectors from token j to i (b, i, j, all_head_size) :: (batch, seq_length, seq_length, all_head_size) | |
if bias_decomp_type == "absdot": | |
weights = torch.abs(torch.einsum("bkd,d->bk", attribution_vectors, bias)) | |
elif bias_decomp_type == "abssim": | |
weights = torch.abs(torch.nn.functional.cosine_similarity(attribution_vectors, bias, dim=-1)) | |
weights = (torch.norm(attribution_vectors, dim=-1) != 0) * weights | |
elif bias_decomp_type == "norm": | |
weights = torch.norm(attribution_vectors, dim=-1) | |
elif bias_decomp_type == "equal": | |
weights = (torch.norm(attribution_vectors, dim=-1) != 0) * 1.0 | |
elif bias_decomp_type == "cls": | |
weights = torch.zeros(attribution_vectors.shape[:-1], device=attribution_vectors.device) | |
weights[:,0] = 1.0 | |
elif bias_decomp_type == "dot": | |
weights = torch.einsum("bkd,d->bk", attribution_vectors, bias) | |
elif bias_decomp_type == "biastoken": | |
attribution_vectors[:,-1] = attribution_vectors[:,-1] + bias | |
return attribution_vectors | |
weights = weights / (weights.sum(dim=-1, keepdim=True) + 1e-12) | |
weighted_bias = torch.matmul(weights.unsqueeze(dim=-1), bias.unsqueeze(dim=0)) | |
return attribution_vectors + weighted_bias | |
def tanh_linear_approximation(self, pre_act_pooled, post_act_pooled): | |
def tanh_deriv(x): | |
return 1 - torch.tanh(x)**2.0 | |
m = tanh_deriv(pre_act_pooled) | |
b = post_act_pooled - m * pre_act_pooled | |
return m, b | |
def tanh_la_decomposition(self, attribution_vectors, pre_act_pooled, post_act_pooled, bias_decomp_type): | |
m, b = self.tanh_linear_approximation(pre_act_pooled, post_act_pooled) | |
mx = attribution_vectors * m.unsqueeze(dim=-2) | |
if bias_decomp_type == "absdot": | |
weights = torch.abs(torch.einsum("bkd,bd->bk", mx, b)) | |
elif bias_decomp_type == "abssim": | |
weights = torch.abs(torch.nn.functional.cosine_similarity(mx, b, dim=-1)) | |
weights = (torch.norm(mx, dim=-1) != 0) * weights | |
elif bias_decomp_type == "norm": | |
weights = torch.norm(mx, dim=-1) | |
elif bias_decomp_type == "equal": | |
weights = (torch.norm(mx, dim=-1) != 0) * 1.0 | |
elif bias_decomp_type == "cls": | |
weights = torch.zeros(mx.shape[:-1], device=mx.device) | |
weights[:,0] = 1.0 | |
weights = weights / (weights.sum(dim=-1, keepdim=True) + 1e-12) | |
weighted_bias = torch.einsum("bd,bk->bkd", b, weights) | |
return mx + weighted_bias | |
def tanh_zo_decomposition(self, attribution_vectors, pre_act_pooled, post_act_pooled): | |
m = post_act_pooled / (pre_act_pooled + 1e-12) | |
mx = attribution_vectors * m.unsqueeze(dim=-2) | |
return mx | |
def ffn_decomposer(self, attribution_vectors, pre_act_pooled, post_act_pooled, include_biases=True, bias_decomp_type="absdot", tanh_approx_type="LA"): | |
post_pool = torch.einsum("ld,bsd->bsl", self.pooler.dense.weight, attribution_vectors) | |
if include_biases: | |
post_pool = self.bias_decomposer(self.pooler.dense.bias, post_pool, bias_decomp_type=bias_decomp_type) | |
if tanh_approx_type == "LA": | |
post_act_pool = self.tanh_la_decomposition(post_pool, pre_act_pooled, post_act_pooled, bias_decomp_type=bias_decomp_type) | |
else: | |
post_act_pool = self.tanh_zo_decomposition(post_pool, pre_act_pooled, post_act_pooled) | |
return post_act_pool | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
decompx_config: Optional[DecompXConfig] = None, # added by Fayyaz / Modarressi | |
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: | |
r""" | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
the model is configured as a decoder. | |
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if self.config.is_decoder: | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
else: | |
use_cache = False | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
batch_size, seq_length = input_shape | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
# past_key_values_length | |
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
if attention_mask is None: | |
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) | |
if token_type_ids is None: | |
if hasattr(self.embeddings, "token_type_ids"): | |
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if self.config.is_decoder and encoder_hidden_states is not None: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
past_key_values_length=past_key_values_length, | |
) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
past_key_values=past_key_values, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
decompx_config=decompx_config, # added by Fayyaz / Modarressi | |
) | |
sequence_output = encoder_outputs[0] | |
decompx_ready = decompx_config is not None | |
pooled_output = self.pooler(sequence_output, decompx_ready=decompx_ready) if self.pooler is not None else None | |
if decompx_ready: | |
pre_act_pooled = pooled_output[1] | |
pooled_output = pooled_output[0] | |
if decompx_config.include_classifier_w_pooler: | |
decompx_idx = -2 if decompx_config.output_all_layers else -1 | |
aggregated_attribution_vectors = encoder_outputs[decompx_idx].aggregated[0] | |
encoder_outputs[decompx_idx].aggregated = output_builder(aggregated_attribution_vectors, decompx_config.output_aggregated) | |
pooler_decomposed = self.ffn_decomposer( | |
attribution_vectors=aggregated_attribution_vectors[:, 0], | |
pre_act_pooled=pre_act_pooled, | |
post_act_pooled=pooled_output, | |
include_biases=decompx_config.include_biases, | |
bias_decomp_type="biastoken" if decompx_config.include_bias_token else decompx_config.bias_decomp_type, | |
tanh_approx_type=decompx_config.tanh_approx_type | |
) | |
encoder_outputs[decompx_idx].pooler = pooler_decomposed | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPoolingAndCrossAttentions( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
past_key_values=encoder_outputs.past_key_values, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
cross_attentions=encoder_outputs.cross_attentions, | |
) | |
class BertForPreTraining(BertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.bert = BertModel(config) | |
self.cls = BertPreTrainingHeads(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.cls.predictions.decoder | |
def set_output_embeddings(self, new_embeddings): | |
self.cls.predictions.decoder = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
next_sentence_label: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], BertForPreTrainingOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), | |
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence | |
pair (see `input_ids` docstring) Indices should be in `[0, 1]`: | |
- 0 indicates sequence B is a continuation of sequence A, | |
- 1 indicates sequence B is a random sequence. | |
kwargs (`Dict[str, any]`, optional, defaults to *{}*): | |
Used to hide legacy arguments that have been deprecated. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import BertTokenizer, BertForPreTraining | |
>>> import torch | |
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
>>> model = BertForPreTraining.from_pretrained("bert-base-uncased") | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> prediction_logits = outputs.prediction_logits | |
>>> seq_relationship_logits = outputs.seq_relationship_logits | |
``` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output, pooled_output = outputs[:2] | |
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) | |
total_loss = None | |
if labels is not None and next_sentence_label is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) | |
total_loss = masked_lm_loss + next_sentence_loss | |
if not return_dict: | |
output = (prediction_scores, seq_relationship_score) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return BertForPreTrainingOutput( | |
loss=total_loss, | |
prediction_logits=prediction_scores, | |
seq_relationship_logits=seq_relationship_score, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BertLMHeadModel(BertPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] | |
def __init__(self, config): | |
super().__init__(config) | |
if not config.is_decoder: | |
logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`") | |
self.bert = BertModel(config, add_pooling_layer=False) | |
self.cls = BertOnlyMLMHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.cls.predictions.decoder | |
def set_output_embeddings(self, new_embeddings): | |
self.cls.predictions.decoder = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.Tensor]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: | |
r""" | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention | |
if the model is configured as a decoder. | |
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used | |
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be | |
in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` | |
are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., | |
config.vocab_size]` | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up | |
decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those | |
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of | |
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
Returns: | |
Example: | |
```python | |
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig | |
>>> import torch | |
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased") | |
>>> config = BertConfig.from_pretrained("bert-base-cased") | |
>>> config.is_decoder = True | |
>>> model = BertLMHeadModel.from_pretrained("bert-base-cased", config=config) | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> prediction_logits = outputs.logits | |
``` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if labels is not None: | |
use_cache = False | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
past_key_values=past_key_values, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
prediction_scores = self.cls(sequence_output) | |
lm_loss = None | |
if labels is not None: | |
# we are doing next-token prediction; shift prediction scores and input ids by one | |
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() | |
labels = labels[:, 1:].contiguous() | |
loss_fct = CrossEntropyLoss() | |
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
output = (prediction_scores,) + outputs[2:] | |
return ((lm_loss,) + output) if lm_loss is not None else output | |
return CausalLMOutputWithCrossAttentions( | |
loss=lm_loss, | |
logits=prediction_scores, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
cross_attentions=outputs.cross_attentions, | |
) | |
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): | |
input_shape = input_ids.shape | |
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly | |
if attention_mask is None: | |
attention_mask = input_ids.new_ones(input_shape) | |
# cut decoder_input_ids if past is used | |
if past is not None: | |
input_ids = input_ids[:, -1:] | |
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past} | |
def _reorder_cache(self, past, beam_idx): | |
reordered_past = () | |
for layer_past in past: | |
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) | |
return reordered_past | |
class BertForMaskedLM(BertPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] | |
def __init__(self, config): | |
super().__init__(config) | |
if config.is_decoder: | |
logger.warning( | |
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for " | |
"bi-directional self-attention." | |
) | |
self.bert = BertModel(config, add_pooling_layer=False) | |
self.cls = BertOnlyMLMHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.cls.predictions.decoder | |
def set_output_embeddings(self, new_embeddings): | |
self.cls.predictions.decoder = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the | |
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
prediction_scores = self.cls(sequence_output) | |
masked_lm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() # -100 index = padding token | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
output = (prediction_scores,) + outputs[2:] | |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
return MaskedLMOutput( | |
loss=masked_lm_loss, | |
logits=prediction_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): | |
input_shape = input_ids.shape | |
effective_batch_size = input_shape[0] | |
# add a dummy token | |
if self.config.pad_token_id is None: | |
raise ValueError("The PAD token should be defined for generation") | |
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) | |
dummy_token = torch.full( | |
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device | |
) | |
input_ids = torch.cat([input_ids, dummy_token], dim=1) | |
return {"input_ids": input_ids, "attention_mask": attention_mask} | |
class BertForNextSentencePrediction(BertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.bert = BertModel(config) | |
self.cls = BertOnlyNSPHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
**kwargs, | |
) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair | |
(see `input_ids` docstring). Indices should be in `[0, 1]`: | |
- 0 indicates sequence B is a continuation of sequence A, | |
- 1 indicates sequence B is a random sequence. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import BertTokenizer, BertForNextSentencePrediction | |
>>> import torch | |
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
>>> model = BertForNextSentencePrediction.from_pretrained("bert-base-uncased") | |
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." | |
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." | |
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") | |
>>> outputs = model(**encoding, labels=torch.LongTensor([1])) | |
>>> logits = outputs.logits | |
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random | |
``` | |
""" | |
if "next_sentence_label" in kwargs: | |
warnings.warn( | |
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use `labels` instead.", | |
FutureWarning, | |
) | |
labels = kwargs.pop("next_sentence_label") | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
seq_relationship_scores = self.cls(pooled_output) | |
next_sentence_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) | |
if not return_dict: | |
output = (seq_relationship_scores,) + outputs[2:] | |
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output | |
return NextSentencePredictorOutput( | |
loss=next_sentence_loss, | |
logits=seq_relationship_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BertForSequenceClassification(BertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.bert = BertModel(config) | |
classifier_dropout = ( | |
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
) | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def bias_decomposer(self, bias, attribution_vectors, bias_decomp_type="absdot"): | |
# Decomposes the input bias based on similarity to the attribution vectors | |
# Args: | |
# bias: a bias vector (all_head_size) | |
# attribution_vectors: the attribution vectors from token j to i (b, i, j, all_head_size) :: (batch, seq_length, seq_length, all_head_size) | |
if bias_decomp_type == "absdot": | |
weights = torch.abs(torch.einsum("bkd,d->bk", attribution_vectors, bias)) | |
elif bias_decomp_type == "abssim": | |
weights = torch.abs(torch.nn.functional.cosine_similarity(attribution_vectors, bias, dim=-1)) | |
weights = (torch.norm(attribution_vectors, dim=-1) != 0) * weights | |
elif bias_decomp_type == "norm": | |
weights = torch.norm(attribution_vectors, dim=-1) | |
elif bias_decomp_type == "equal": | |
weights = (torch.norm(attribution_vectors, dim=-1) != 0) * 1.0 | |
elif bias_decomp_type == "cls": | |
weights = torch.zeros(attribution_vectors.shape[:-1], device=attribution_vectors.device) | |
weights[:,0] = 1.0 | |
elif bias_decomp_type == "dot": | |
weights = torch.einsum("bkd,d->bk", attribution_vectors, bias) | |
elif bias_decomp_type == "biastoken": | |
attribution_vectors[:,-1] = attribution_vectors[:,-1] + bias | |
return attribution_vectors | |
weights = weights / (weights.sum(dim=-1, keepdim=True) + 1e-12) | |
weighted_bias = torch.matmul(weights.unsqueeze(dim=-1), bias.unsqueeze(dim=0)) | |
return attribution_vectors + weighted_bias | |
def biastoken_decomposer(self, biastoken, attribution_vectors, bias_decomp_type="absdot"): | |
# Decomposes the input bias based on similarity to the attribution vectors | |
# Args: | |
# bias: a bias vector (all_head_size) | |
# attribution_vectors: the attribution vectors from token j to i (b, i, j, all_head_size) :: (batch, seq_length, seq_length, all_head_size) | |
if bias_decomp_type == "absdot": | |
weights = torch.abs(torch.einsum("bkd,bd->bk", attribution_vectors, biastoken)) | |
elif bias_decomp_type == "abssim": | |
weights = torch.abs(torch.nn.functional.cosine_similarity(attribution_vectors, biastoken, dim=-1)) | |
weights = (torch.norm(attribution_vectors, dim=-1) != 0) * weights | |
elif bias_decomp_type == "norm": | |
weights = torch.norm(attribution_vectors, dim=-1) | |
elif bias_decomp_type == "equal": | |
weights = (torch.norm(attribution_vectors, dim=-1) != 0) * 1.0 | |
elif bias_decomp_type == "cls": | |
weights = torch.zeros(attribution_vectors.shape[:-1], device=attribution_vectors.device) | |
weights[:,0] = 1.0 | |
elif bias_decomp_type == "dot": | |
weights = torch.einsum("bkd,d->bk", attribution_vectors, biastoken) | |
weights = weights / (weights.sum(dim=-1, keepdim=True) + 1e-12) | |
weighted_bias = torch.matmul(weights.unsqueeze(dim=-1), biastoken.unsqueeze(dim=1)) | |
return attribution_vectors + weighted_bias | |
def ffn_decomposer(self, attribution_vectors, include_biases=True, bias_decomp_type="absdot"): | |
post_classifier = torch.einsum("ld,bkd->bkl", self.classifier.weight, attribution_vectors) | |
if include_biases: | |
post_classifier = self.bias_decomposer(self.classifier.bias, post_classifier, bias_decomp_type=bias_decomp_type) | |
return post_classifier | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
decompx_config: Optional[DecompXConfig] = None, # added by Fayyaz / Modarressi | |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
decompx_config=decompx_config | |
) | |
pooled_output = outputs[1] | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
if decompx_config and decompx_config.include_classifier_w_pooler: | |
decompx_idx = -2 if decompx_config.output_all_layers else -1 | |
aggregated_attribution_vectors = outputs[decompx_idx].pooler | |
outputs[decompx_idx].pooler = output_builder(aggregated_attribution_vectors, decompx_config.output_pooler) | |
classifier_decomposed = self.ffn_decomposer( | |
attribution_vectors=aggregated_attribution_vectors, | |
include_biases=decompx_config.include_biases, | |
bias_decomp_type="biastoken" if decompx_config.include_bias_token else decompx_config.bias_decomp_type | |
) | |
if decompx_config.include_bias_token and decompx_config.bias_decomp_type is not None: | |
bias_token = classifier_decomposed[:,-1,:].detach().clone() | |
classifier_decomposed = classifier_decomposed[:,:-1,:] | |
classifier_decomposed = self.biastoken_decomposer( | |
bias_token, | |
classifier_decomposed, | |
bias_decomp_type=decompx_config.bias_decomp_type | |
) | |
outputs[decompx_idx].classifier = classifier_decomposed if decompx_config.output_classifier else None | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output # (loss), logits, (hidden_states), (attentions) | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BertForMultipleChoice(BertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.bert = BertModel(config) | |
classifier_dropout = ( | |
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
) | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.classifier = nn.Linear(config.hidden_size, 1) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., | |
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See | |
`input_ids` above) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | |
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
inputs_embeds = ( | |
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | |
if inputs_embeds is not None | |
else None | |
) | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
reshaped_logits = logits.view(-1, num_choices) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
if not return_dict: | |
output = (reshaped_logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return MultipleChoiceModelOutput( | |
loss=loss, | |
logits=reshaped_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BertForTokenClassification(BertPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.bert = BertModel(config, add_pooling_layer=False) | |
classifier_dropout = ( | |
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
) | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BertForQuestionAnswering(BertPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.bert = BertModel(config, add_pooling_layer=False) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
start_positions: Optional[torch.Tensor] = None, | |
end_positions: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |