DecompX / DecompX /src /decompx_utils.py
mohsenfayyaz's picture
Upload 3 files
e654c3a
import torch
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
@dataclass
class DecompXConfig():
include_biases: Optional[bool] = True
bias_decomp_type: Optional[str] = "absdot" # "absdot": Based on the absolute value of dot products | "norm": Based on the norm of the attribution vectors | "equal": equal decomposition | "abssim": Based on the absolute value of cosine similarites | "cls": add to cls token
include_bias_token: Optional[bool] = False # Adds an extra input token as a bias in the attribution vectors
# If the bias_decomp_type is None and include_bias_token is True then the final token in the input tokens of the attr. vectors will be the summation of the biases
# Otherwise the bias token will be decomposed with the specified decomp type
include_LN1: Optional[bool] = True
include_FFN: Optional[bool] = True
FFN_approx_type: Optional[str] = "GeLU_ZO" # "GeLU_LA": GeLU-based linear approximation | "ReLU": Using ReLU as an approximation | "GeLU_ZO": Zero-origin slope approximation
FFN_fast_mode: Optional[bool] = False
include_LN2: Optional[bool] = True
aggregation: Optional[str] = None # None: No aggregation | vector: Vector-based aggregation | rollout: Norm-based rollout aggregation
include_classifier_w_pooler: Optional[bool] = True
tanh_approx_type: Optional[str] = "ZO" # "ZO": Zero-origin slope approximation | "LA": Linear approximation
output_all_layers: Optional[bool] = False # True: Output all layers | False: Output only last layer
output_attention: Optional[str] = None # None | norm | vector | both
output_res1: Optional[str] = None # None | norm | vector | both
output_LN1: Optional[str] = None # None | norm | vector | both
output_FFN: Optional[str] = None # None | norm | vector | both
output_res2: Optional[str] = None # None | norm | vector | both
output_encoder: Optional[str] = None # None | norm | vector | both
output_aggregated: Optional[str] = None # None | norm | vector | both
output_pooler: Optional[str] = None # None | norm | vector | both
output_classifier: Optional[bool] = True
@dataclass
class DecompXOutput():
attention: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
res1: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
LN1: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
FFN: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
res2: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
encoder: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
aggregated: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
pooler: Optional[Union[Tuple[torch.Tensor], torch.Tensor]] = None
classifier: Optional[torch.Tensor] = None