Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import ViTImageProcessor, ViTForImageClassification
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
|
6 |
+
|
7 |
+
processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
|
8 |
+
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
|
9 |
+
|
10 |
+
|
11 |
+
def predict(image) :
|
12 |
+
inputs = processor(images=image, return_tensors="pt")
|
13 |
+
outputs = model(**inputs)
|
14 |
+
logits = outputs.logits
|
15 |
+
# model predicts one of the 1000 ImageNet classes
|
16 |
+
predicted_class_idx = logits.argmax(-1).item()
|
17 |
+
return model.config.id2label[predicted_class_idx]
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
gradio_app = gr.Interface(
|
23 |
+
predict,
|
24 |
+
inputs=gr.Image(label="Select image for classification", sources=['upload', 'webcam'], type="pil"),
|
25 |
+
outputs=gr.Textbox(),
|
26 |
+
title="Image Classification",
|
27 |
+
live=True,
|
28 |
+
allow_flagging="never",
|
29 |
+
)
|
30 |
+
|
31 |
+
gradio_app.launch()
|