Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,41 +1,29 @@
|
|
| 1 |
-
import requests
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
import torch.nn.functional as F
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Load tokenizer and model
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
|
| 13 |
model = AutoModelForSequenceClassification.from_pretrained("emilyalsentzer/Bio_ClinicalBERT", num_labels=1000) # Adjust num_labels as needed
|
| 14 |
|
| 15 |
-
# Function to fetch ICD codes from API
|
| 16 |
-
def fetch_icd_codes(query):
|
| 17 |
-
try:
|
| 18 |
-
response = requests.get(f"{ICD_API_URL}?desc={query}")
|
| 19 |
-
if response.status_code == 200:
|
| 20 |
-
return response.json() # Adjust based on API response format
|
| 21 |
-
else:
|
| 22 |
-
return []
|
| 23 |
-
except Exception as e:
|
| 24 |
-
print(f"Error fetching ICD codes: {e}")
|
| 25 |
-
return []
|
| 26 |
-
|
| 27 |
-
# Function to fetch CPT codes from API
|
| 28 |
-
def fetch_cpt_codes(query):
|
| 29 |
-
try:
|
| 30 |
-
response = requests.get(f"{CPT_API_URL}?desc={query}")
|
| 31 |
-
if response.status_code == 200:
|
| 32 |
-
return response.json() # Adjust based on API response format
|
| 33 |
-
else:
|
| 34 |
-
return []
|
| 35 |
-
except Exception as e:
|
| 36 |
-
print(f"Error fetching CPT codes: {e}")
|
| 37 |
-
return []
|
| 38 |
-
|
| 39 |
# Prediction function
|
| 40 |
def predict_codes(text):
|
| 41 |
if not text.strip():
|
|
@@ -62,7 +50,7 @@ def predict_codes(text):
|
|
| 62 |
# Get top 3 predictions
|
| 63 |
top_k = torch.topk(probs, k=3)
|
| 64 |
|
| 65 |
-
# Fetch ICD and CPT codes using
|
| 66 |
icd_results = fetch_icd_codes(text)
|
| 67 |
cpt_results = fetch_cpt_codes(text)
|
| 68 |
|
|
@@ -80,8 +68,15 @@ def predict_codes(text):
|
|
| 80 |
# Create Gradio interface
|
| 81 |
iface = gr.Interface(
|
| 82 |
fn=predict_codes,
|
| 83 |
-
inputs=gr.Textbox(
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
title="AutoRCM - Medical Code Predictor",
|
| 86 |
description="Enter a medical summary to get recommended ICD-10 and CPT codes.",
|
| 87 |
examples=[
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
import torch.nn.functional as F
|
| 5 |
|
| 6 |
+
# Mock ICD and CPT data (replace with actual API calls or datasets)
|
| 7 |
+
def fetch_icd_codes(query):
|
| 8 |
+
# Mock ICD codes for demonstration
|
| 9 |
+
return [
|
| 10 |
+
{"code": "R50.9", "description": "Fever, unspecified"},
|
| 11 |
+
{"code": "A00", "description": "Cholera"},
|
| 12 |
+
{"code": "J06.9", "description": "Acute upper respiratory infection, unspecified"}
|
| 13 |
+
]
|
| 14 |
+
|
| 15 |
+
def fetch_cpt_codes(query):
|
| 16 |
+
# Mock CPT codes for demonstration
|
| 17 |
+
return [
|
| 18 |
+
{"code": "99213", "description": "Office or other outpatient visit"},
|
| 19 |
+
{"code": "87804", "description": "Infectious agent detection by immunoassay"},
|
| 20 |
+
{"code": "85025", "description": "Complete blood count (CBC)"}
|
| 21 |
+
]
|
| 22 |
|
| 23 |
# Load tokenizer and model
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
|
| 25 |
model = AutoModelForSequenceClassification.from_pretrained("emilyalsentzer/Bio_ClinicalBERT", num_labels=1000) # Adjust num_labels as needed
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# Prediction function
|
| 28 |
def predict_codes(text):
|
| 29 |
if not text.strip():
|
|
|
|
| 50 |
# Get top 3 predictions
|
| 51 |
top_k = torch.topk(probs, k=3)
|
| 52 |
|
| 53 |
+
# Fetch ICD and CPT codes using mock functions
|
| 54 |
icd_results = fetch_icd_codes(text)
|
| 55 |
cpt_results = fetch_cpt_codes(text)
|
| 56 |
|
|
|
|
| 68 |
# Create Gradio interface
|
| 69 |
iface = gr.Interface(
|
| 70 |
fn=predict_codes,
|
| 71 |
+
inputs=gr.Textbox(
|
| 72 |
+
lines=5,
|
| 73 |
+
placeholder="Enter medical summary here...",
|
| 74 |
+
label="Medical Summary"
|
| 75 |
+
),
|
| 76 |
+
outputs=gr.Textbox(
|
| 77 |
+
label="Predicted Codes",
|
| 78 |
+
lines=10
|
| 79 |
+
),
|
| 80 |
title="AutoRCM - Medical Code Predictor",
|
| 81 |
description="Enter a medical summary to get recommended ICD-10 and CPT codes.",
|
| 82 |
examples=[
|