Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain_openai import OpenAI, OpenAIEmbeddings | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain_community.vectorstores import FAISS | |
# Load environment variables | |
load_dotenv() | |
openai_api_key = os.getenv('OPENAI_API_KEY') | |
# Initialize Streamlit session states | |
if 'vectorDB' not in st.session_state: | |
st.session_state.vectorDB = None | |
# Function to extract text from a PDF file | |
def get_pdf_text(pdf): | |
text = "" | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
# Function to create a vector database | |
def get_vectorstore(text_chunks): | |
embeddings = OpenAIEmbeddings(api_key=openai_api_key) | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
# Function to split text into chunks | |
def get_text_chunks(text): | |
text_chunks = text.split('\n\n') # Modify this based on your text splitting requirements | |
return text_chunks | |
# Function to process PDF and create vector database | |
def processing(pdf): | |
raw_text = get_pdf_text(pdf) | |
text_chunks = get_text_chunks(raw_text) | |
vectorDB = get_vectorstore(text_chunks) | |
return vectorDB | |
# Function to generate questions using OpenAI GPT-3 | |
def generate_questions(text, num_questions): | |
prompt = f"Generate {num_questions} questions from the given text:\n{text}" | |
response = OpenAI.Completion.create( | |
engine="gpt-3.5-turbo", # You can use another engine if needed | |
prompt=prompt, | |
max_tokens=200, | |
temperature=0.7 | |
) | |
questions = [choice['text'].strip() for choice in response['choices']] | |
return questions | |
# Modified generate_quiz function | |
def generate_quiz(quiz_name, quiz_topic, num_questions, pdf_content): | |
st.header(f"Quiz Generator: {quiz_name}") | |
st.subheader(f"Topic: {quiz_topic}") | |
# Process PDF and create vector database | |
if st.button('Process PDF'): | |
st.session_state['vectorDB'] = processing(pdf_content) | |
st.success('PDF Processed and Vector Database Created') | |
# Generate Quiz Questions using OpenAI GPT-3.5 | |
if st.session_state.vectorDB: | |
raw_text = get_pdf_text(pdf_content) | |
generated_questions = generate_questions(raw_text, num_questions) | |
# Display and collect user input for each generated question | |
for i, generated_question in enumerate(generated_questions): | |
st.subheader(f"Question {i + 1}") | |
question = st.text_input(f"Generated Question: {generated_question}", key=f"question_{i + 1}") | |
# Collect options and correct answer | |
options = [] | |
for j in range(1, 5): | |
option = st.text_input(f"Option {j}:", key=f"option_{i + 1}_{j}") | |
options.append(option) | |
correct_answer = st.selectbox(f"Correct Answer for Question {i + 1}:", options=options, key=f"correct_answer_{i + 1}") | |
# Save question, options, and correct answer in vector database | |
# (Replace the following line with your logic to store in the vector database) | |
if st.button(f'Save Question {i + 1}'): | |
st.success(f'Question {i + 1} Saved!') | |
# Save button to store vector database | |
if st.session_state.vectorDB: | |
if st.button('Save Vector Database'): | |
st.success('Vector Database Saved') | |
if __name__ =='__main__': | |
st.set_page_config(page_title="CB Quiz Generator", page_icon="📝") | |
st.title('🤖CB Quiz Generator🧠') | |
st.subheader('Powered By CoffeeBeans') | |
# User inputs | |
quiz_name = st.text_input('Enter Quiz Name:') | |
quiz_topic = st.text_input('Enter Quiz Topic:') | |
num_questions = st.number_input('Enter Number of Questions:', min_value=1, value=5, step=1) | |
pdf_content = st.file_uploader("Upload PDF Content for Questions:", type='pdf') | |
# Generate quiz if all inputs are provided | |
if quiz_name and quiz_topic and num_questions and pdf_content: | |
generate_quiz(quiz_name, quiz_topic, num_questions, pdf_content) | |