Spaces:
Sleeping
Sleeping
mohamedemam
commited on
Commit
•
b130785
1
Parent(s):
2ca526b
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,16 @@ import re
|
|
5 |
model_name = "mohamedemam/QA_GeneraToR"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Recommended words for users to choose from
|
10 |
recommended_words = [
|
11 |
"which", "how", "when", "where", "who", "whom", "whose", "why",
|
@@ -15,15 +24,6 @@ recommended_words = [
|
|
15 |
]
|
16 |
|
17 |
# Example contexts
|
18 |
-
example_contexts = [
|
19 |
-
"when: Lionel Andrés Messi...",
|
20 |
-
"where: Lionel Andrés Messi...",
|
21 |
-
"how: Lionel Andrés Messi...",
|
22 |
-
"what: Lionel Andrés Messi...",
|
23 |
-
"where: Egypt...",
|
24 |
-
"where: There is evidence..."
|
25 |
-
# Add more examples here
|
26 |
-
]
|
27 |
|
28 |
# Function to generate questions and answers with configurable parameters
|
29 |
def generate_qa(context, recommended_word, temperature, top_p,num_seq, num_samples=3):
|
|
|
5 |
model_name = "mohamedemam/QA_GeneraToR"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
8 |
+
model.eval()
|
9 |
+
import wikipediaapi
|
10 |
|
11 |
+
|
12 |
+
# Create a Wikipedia API instance
|
13 |
+
wiki_wiki = wikipediaapi.Wikipedia('MyProjectName (merlin@example.com)', 'en')
|
14 |
+
page_py = wiki_wiki.page('Leo messi')
|
15 |
+
example_contexts=page_py.text.split(f"\n")
|
16 |
+
for i in range(len(example_contexts)):
|
17 |
+
example_contexts[i]=re.sub(f'\n'," ", example_contexts[i])
|
18 |
# Recommended words for users to choose from
|
19 |
recommended_words = [
|
20 |
"which", "how", "when", "where", "who", "whom", "whose", "why",
|
|
|
24 |
]
|
25 |
|
26 |
# Example contexts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# Function to generate questions and answers with configurable parameters
|
29 |
def generate_qa(context, recommended_word, temperature, top_p,num_seq, num_samples=3):
|