|
|
import math |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from model.deep_lab_model.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d |
|
|
|
|
|
class _ASPPModule(nn.Module): |
|
|
def __init__(self, inplanes, planes, kernel_size, padding, dilation, BatchNorm): |
|
|
super(_ASPPModule, self).__init__() |
|
|
self.atrous_conv = nn.Conv2d(inplanes, planes, kernel_size=kernel_size, |
|
|
stride=1, padding=padding, dilation=dilation, bias=False) |
|
|
self.bn = BatchNorm(planes) |
|
|
self.relu = nn.ReLU() |
|
|
|
|
|
self._init_weight() |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.atrous_conv(x) |
|
|
x = self.bn(x) |
|
|
|
|
|
return self.relu(x) |
|
|
|
|
|
def _init_weight(self): |
|
|
for m in self.modules(): |
|
|
if isinstance(m, nn.Conv2d): |
|
|
torch.nn.init.kaiming_normal_(m.weight) |
|
|
elif isinstance(m, SynchronizedBatchNorm2d): |
|
|
m.weight.data.fill_(1) |
|
|
m.bias.data.zero_() |
|
|
elif isinstance(m, nn.BatchNorm2d): |
|
|
m.weight.data.fill_(1) |
|
|
m.bias.data.zero_() |
|
|
|
|
|
class ASPP(nn.Module): |
|
|
def __init__(self, backbone, output_stride, BatchNorm): |
|
|
super(ASPP, self).__init__() |
|
|
if backbone == 'drn': |
|
|
inplanes = 512 |
|
|
elif backbone == 'mobilenet': |
|
|
inplanes = 320 |
|
|
else: |
|
|
inplanes = 2048 |
|
|
if output_stride == 16: |
|
|
dilations = [1, 6, 12, 18] |
|
|
elif output_stride == 8: |
|
|
dilations = [1, 12, 24, 36] |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|
|
|
self.aspp1 = _ASPPModule(inplanes, 256, 1, padding=0, dilation=dilations[0], BatchNorm=BatchNorm) |
|
|
self.aspp2 = _ASPPModule(inplanes, 256, 3, padding=dilations[1], dilation=dilations[1], BatchNorm=BatchNorm) |
|
|
self.aspp3 = _ASPPModule(inplanes, 256, 3, padding=dilations[2], dilation=dilations[2], BatchNorm=BatchNorm) |
|
|
self.aspp4 = _ASPPModule(inplanes, 256, 3, padding=dilations[3], dilation=dilations[3], BatchNorm=BatchNorm) |
|
|
|
|
|
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), |
|
|
nn.Conv2d(inplanes, 256, 1, stride=1, bias=False), |
|
|
BatchNorm(256), |
|
|
nn.ReLU()) |
|
|
self.conv1 = nn.Conv2d(1280, 256, 1, bias=False) |
|
|
self.bn1 = BatchNorm(256) |
|
|
self.relu = nn.ReLU() |
|
|
self.dropout = nn.Dropout(0.5) |
|
|
self._init_weight() |
|
|
|
|
|
def forward(self, x): |
|
|
x1 = self.aspp1(x) |
|
|
x2 = self.aspp2(x) |
|
|
x3 = self.aspp3(x) |
|
|
x4 = self.aspp4(x) |
|
|
x5 = self.global_avg_pool(x) |
|
|
x5 = F.interpolate(x5, size=x4.size()[2:], mode='bilinear', align_corners=True) |
|
|
x = torch.cat((x1, x2, x3, x4, x5), dim=1) |
|
|
|
|
|
x = self.conv1(x) |
|
|
x = self.bn1(x) |
|
|
x = self.relu(x) |
|
|
|
|
|
return self.dropout(x) |
|
|
|
|
|
def _init_weight(self): |
|
|
for m in self.modules(): |
|
|
if isinstance(m, nn.Conv2d): |
|
|
|
|
|
|
|
|
torch.nn.init.kaiming_normal_(m.weight) |
|
|
elif isinstance(m, SynchronizedBatchNorm2d): |
|
|
m.weight.data.fill_(1) |
|
|
m.bias.data.zero_() |
|
|
elif isinstance(m, nn.BatchNorm2d): |
|
|
m.weight.data.fill_(1) |
|
|
m.bias.data.zero_() |
|
|
|
|
|
|
|
|
def build_aspp(backbone, output_stride, BatchNorm): |
|
|
return ASPP(backbone, output_stride, BatchNorm) |