moein99's picture
Initial Echo Space
8f51ef2
import re
import json
import numpy as np
import functools
import torchvision
from pathlib import Path
import numpy as np
import cv2
import pydicom as dicom
import torch
with open("assets/per_section.json") as f:
json_data = json.load(f)
with open("assets/all_phr.json") as f:
all_phrases = json.load(f)
_ybr_to_rgb_lut = None
COARSE_VIEWS=['A2C',
'A3C',
'A4C',
'A5C',
'Apical_Doppler',
'Doppler_Parasternal_Long',
'Doppler_Parasternal_Short',
'Parasternal_Long',
'Parasternal_Short',
'SSN',
'Subcostal']
ALL_SECTIONS=["Left Ventricle",
"Resting Segmental Wall Motion Analysis",
"Right Ventricle",
"Left Atrium",
"Right Atrium",
"Atrial Septum",
"Mitral Valve",
"Aortic Valve",
"Tricuspid Valve",
"Pulmonic Valve",
"Pericardium",
"Aorta",
"IVC",
"Pulmonary Artery",
"Pulmonary Veins",
"Postoperative Findings"]
t_list = {k: [all_phrases[k][j] for j in all_phrases[k]]
for k in all_phrases}
phrases_per_section_list={k:functools.reduce(lambda a,b: a+b, v) for (k,v) in t_list.items()}
phrases_per_section_list_org={k:functools.reduce(lambda a,b: a+b, v) for (k,v) in t_list.items()}
numerical_pattern = r'(\\d+(\\.\\d+)?)' # Escaped backslashes for integers or floats
string_pattern = r'\\b\\w+.*?(?=\\.)'
def isin(phrase,text):
return phrase.lower() in (text.lower())
def extract_section(report, section_header):
# Create a regex pattern that matches the section and anything up to the next [SEP]
pattern = rf"{section_header}(.*?)(?=\[SEP\])"
# Search for the pattern in the report
match = re.search(pattern, report)
# If a match is found, return the section including the header and the content up to [SEP]
if match:
# Include the trailing [SEP] if you need it as part of the output
return f"{section_header}{match.group(1)}[SEP]"
else:
return "Section not found."
def extract_features(report: str) -> list:
"""
Returns a list of 21 different features
see json_data for a list of features
"""
sorted_features=['impella',
'ejection_fraction',
'pacemaker',
'rv_systolic_function_depressed',
'right_ventricle_dilation',
'left_atrium_dilation',
'right_atrium_dilation',
'mitraclip',
'mitral_annular_calcification',
'mitral_stenosis',
'mitral_regurgitation',
'tavr',
'bicuspid_aov_morphology',
'aortic_stenosis',
'aortic_regurgitation',
'tricuspid_stenosis',
'tricuspid_valve_regurgitation',
'pericardial_effusion',
'aortic_root_dilation',
'dilated_ivc',
'pulmonary_artery_pressure_continuous']
sorted_json_data = {k:json_data[k] for k in sorted_features}
features=[]
for key,value in sorted_json_data.items():
if value['mode'] == "regression":
match=None
for phrase in value['label_sources']:
pattern = re.compile((phrase.split("<#>")[0] + r"(\d{1,3}(?:\.\d{1,2})?)"), re.IGNORECASE)
match = pattern.search(report)
if match:
features.append(float(match.group(1)))
break
if match is None:
features.append(np.nan)
elif value['mode'] == "binary":
assigned=False
for phrase in value['label_sources']:
if isin(phrase,report):
features.append(1)
assigned=True
break
if not assigned:
features.append(0)
return features
def make_it_regex(sec):
# replace numerical and string with corresponding regex
for idx in range(len(sec)):
sec[idx]=sec[idx].replace('(', '\(').replace(')', '\)').replace("+",'\+')
sec[idx]=re.sub(r'<numerical>', numerical_pattern, sec[idx])
sec[idx]=re.sub(r'<string>', string_pattern, sec[idx])
regex_sec = re.compile('|'.join(sec), flags=re.IGNORECASE)
return regex_sec
regex_per_section={k: make_it_regex(v)
for (k,v) in phrases_per_section_list.items()}
def remove_subsets(strings):
result=[]
for string in strings:
if not any(string in res for res in result):
result.append(string)
return list(result)
def structure_rep(rep):
#remove double spaces
rep = re.sub(r'\s{2,}', ' ', rep)
structured_report = []
for sec in ALL_SECTIONS:
cur_section= extract_section(rep,sec)
new_section=[sec+":"]
# Find all matches using the combined pattern
for match in re.finditer(regex_per_section[sec], cur_section):
new_section.append(cur_section[match.start():match.end()])
if len(new_section)>1:
#remove phrases that are a subset of some other phrase
new_section=remove_subsets(new_section)
new_section.append("[SEP]")
structured_report+=new_section
# Join structured report parts
structured_report = ' '.join(structured_report)
return structured_report
def phrase_decode(phrase_ids):
report = ""
current_section = -1
for sec_idx, phrase_idx, value in phrase_ids:
section=list(phrases_per_section_list_org.keys())[sec_idx]
if sec_idx!=current_section:
if current_section!=-1:
report+="[SEP] "
report += section + ": "
current_section=sec_idx
# Get phrase template
phr = phrases_per_section_list_org[section][phrase_idx]
if '<numerical>' in phr:
phr = phr.replace('<numerical>',str(value))
elif '<string>' in phr:
phr = phr.replace('<string>',str(value))
report += phr + " "
report += "[SEP]"
return report
def apply_zoom(img_batch,zoom=0.1):
"""
Apply zoom on a batch of images using PyTorch.
Parameters:
img_batch (torch.Tensor): A batch of images of shape (batch_size, height, width, channels).
zoom (float): The zoom factor to apply, default is 0.1 (i.e., crop 10% from each side).
Returns:
torch.Tensor: A batch of zoomed images.
"""
batch_size, height, width, channels = img_batch.shape
# Calculate padding for zoom
pad_x = round(int(width * zoom)) # X-axis (width)
pad_y = round(int(height * zoom)) # Y-axis (height)
# Crop the images by the zoom factor
img_zoomed = img_batch[:, pad_y:-pad_y, pad_x:-pad_x, :]
return img_zoomed
def crop_and_scale(img, res=(224, 224), interpolation=cv2.INTER_CUBIC, zoom=0.1):
in_res = (img.shape[1], img.shape[0])
r_in = in_res[0] / in_res[1]
r_out = res[0] / res[1]
if r_in > r_out:
padding = int(round((in_res[0] - r_out * in_res[1]) / 2))
img = img[:, padding:-padding]
if r_in < r_out:
padding = int(round((in_res[1] - in_res[0] / r_out) / 2))
img = img[padding:-padding]
if zoom != 0:
pad_x = round(int(img.shape[1] * zoom))
pad_y = round(int(img.shape[0] * zoom))
img = img[pad_y:-pad_y, pad_x:-pad_x]
img = cv2.resize(img, res, interpolation=interpolation)
return img
def downsample_and_crop(testarray):
##################### CREATE MASK #####################
# Sum all the frames
frame_sum = testarray[0] # Start off the frameSum with the first frame<<
# Convert color profile b/c cv2 messes up colors when it reads it in
frame_sum = cv2.cvtColor(frame_sum, cv2.COLOR_BGR2GRAY)
original = frame_sum
frame_sum = np.where(frame_sum>0,1,0) # make all non-zero values 1
frames = testarray.shape[0]
for i in range(frames): # Go through every frame
frame = testarray[i, :, :, :]
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = np.where(frame > 0, 1, 0) # make all non-zero values 1
frame_sum = np.add(frame_sum, frame)
# Dilate
kernel = np.ones((3,3), np.uint8)
frame_sum = cv2.dilate(np.uint8(frame_sum), kernel, iterations=10)
# Make binary
frame_overlap = np.where(frame_sum>0,1,0)
###### Center and Square both Mask and Video ########
# Center image by finding center x of the image
# Pick first 300 y-values
center = frame_overlap[0:300, :]
# compress along y axis
center = np.mean(center, axis=0)
try:
center = np.where(center > 0, 1, 0) # make binary
except:
return
# find index where first goes from 0 to 1 and goes from 1 to 0
try:
indexL = np.where(center>0)[0][0]
indexR = center.shape[0]-np.where(np.flip(center)>0)[0][0]
center_index = int((indexL + indexR) / 2)
except:
return
# Cut off x on one side so that it's centered on x axis
left_margin = center_index
right_margin = center.shape[0] - center_index
if left_margin > right_margin:
frame_overlap = frame_overlap[:, (left_margin - right_margin):]
testarray = testarray[:, :, (left_margin - right_margin):, :]
else:
frame_overlap = frame_overlap[: , :(center_index + left_margin)]
testarray = testarray[:, :, :(center_index + left_margin), :]
#Make image square by cutting
height = frame_overlap.shape[0]
width = frame_overlap.shape[1]
#Trim by 1 pixel if a dimension has an odd number of pixels
if (height % 2) != 0:
frame_overlap = frame_overlap[0:height - 1, :]
testarray = testarray[:, 0:height - 1, :, :]
if (width % 2) != 0:
frame_overlap = frame_overlap[:, 0:width - 1]
testarray = testarray[:, :, 0:width - 1, :]
height = frame_overlap.shape[0]
width = frame_overlap.shape[1]
bias = int(abs(height - width) / 2)
if height > width:
frame_overlap = frame_overlap[bias:height-bias, :]
testarray = testarray[:, bias:height-bias, :, :]
else:
frame_overlap = frame_overlap[:,bias:width-bias]
testarray = testarray[:, :, bias:width-bias, :]
return testarray
def mask_outside_ultrasound(original_pixels: np.array) -> np.array:
"""
Masks all pixels outside the ultrasound region in a video.
Args:
vid (np.ndarray): A numpy array representing the video frames. FxHxWxC
Returns:
np.ndarray: A numpy array with pixels outside the ultrasound region masked.
"""
try:
testarray=np.copy(original_pixels)
vid=np.copy(original_pixels)
##################### CREATE MASK #####################
# Sum all the frames
frame_sum = testarray[0].astype(np.float32) # Start off the frameSum with the first frame
frame_sum = cv2.cvtColor(frame_sum, cv2.COLOR_YUV2RGB)
frame_sum = cv2.cvtColor(frame_sum, cv2.COLOR_RGB2GRAY)
frame_sum = np.where(frame_sum > 0, 1, 0) # make all non-zero values 1
frames = testarray.shape[0]
for i in range(frames): # Go through every frame
frame = testarray[i, :, :, :].astype(np.uint8)
frame = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
frame = np.where(frame>0,1,0) # make all non-zero values 1
frame_sum = np.add(frame_sum,frame)
# Erode to get rid of the EKG tracing
kernel = np.ones((3,3), np.uint8)
frame_sum = cv2.erode(np.uint8(frame_sum), kernel, iterations=10)
# Make binary
frame_sum = np.where(frame_sum > 0, 1, 0)
# Make the difference frame fr difference between 1st and last frame
# This gets rid of static elements
frame0 = testarray[0].astype(np.uint8)
frame0 = cv2.cvtColor(frame0, cv2.COLOR_YUV2RGB)
frame0 = cv2.cvtColor(frame0, cv2.COLOR_RGB2GRAY)
frame_last = testarray[testarray.shape[0] - 1].astype(np.uint8)
frame_last = cv2.cvtColor(frame_last, cv2.COLOR_YUV2RGB)
frame_last = cv2.cvtColor(frame_last, cv2.COLOR_RGB2GRAY)
frame_diff = abs(np.subtract(frame0, frame_last))
frame_diff = np.where(frame_diff > 0, 1, 0)
# Ensure the upper left hand corner 20x20 box all 0s.
# There is a weird dot that appears here some frames on Stanford echoes
frame_diff[0:20, 0:20] = np.zeros([20, 20])
# Take the overlap of the sum frame and the difference frame
frame_overlap = np.add(frame_sum,frame_diff)
frame_overlap = np.where(frame_overlap > 1, 1, 0)
# Dilate
kernel = np.ones((3,3), np.uint8)
frame_overlap = cv2.dilate(np.uint8(frame_overlap), kernel, iterations=10).astype(np.uint8)
# Fill everything that's outside the mask sector with some other number like 100
cv2.floodFill(frame_overlap, None, (0,0), 100)
# make all non-100 values 255. The rest are 0
frame_overlap = np.where(frame_overlap!=100,255,0).astype(np.uint8)
contours, hierarchy = cv2.findContours(frame_overlap, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# contours[0] has shape (445, 1, 2). 445 coordinates. each coord is 1 row, 2 numbers
# Find the convex hull
for i in range(len(contours)):
hull = cv2.convexHull(contours[i])
cv2.drawContours(frame_overlap, [hull], -1, (255, 0, 0), 3)
frame_overlap = np.where(frame_overlap > 0, 1, 0).astype(np.uint8) #make all non-0 values 1
# Fill everything that's outside hull with some other number like 100
cv2.floodFill(frame_overlap, None, (0,0), 100)
# make all non-100 values 255. The rest are 0
frame_overlap = np.array(np.where(frame_overlap != 100, 255, 0),dtype=bool)
################## Create your .avi file and apply mask ##################
# Store the dimension values
# Apply the mask to every frame and channel (changing in place)
for i in range(len(vid)):
frame = vid[i, :, :, :].astype('uint8')
frame = cv2.cvtColor(frame, cv2.COLOR_YUV2BGR)
frame = cv2.bitwise_and(frame, frame, mask = frame_overlap.astype(np.uint8))
vid[i,:,:,:]=frame
return vid
except Exception as e:
print("Error masking returned as is.")
return vid
def write_video(p: Path, pixels: np.ndarray, fps=30.0, codec='h264'):
torchvision.io.write_video(str(p), pixels, fps, codec)
def write_to_avi(frames: np.ndarray, out_file, fps=30):
out = cv2.VideoWriter(str(out_file), cv2.VideoWriter_fourcc(*'MJPG'), fps, (frames.shape[2], frames.shape[1]))
for frame in frames:
out.write(frame.astype(np.uint8))
out.release()
# def read_video(p: Path, start=None, end=None, units=None, out_format=None):
# return torchvision.io.read_video(str(p), start, end, units, out_format)
def write_image(p: Path, pixels: np.ndarray):
cv2.imwrite(str(p), pixels)
def ybr_to_rgb(pixels: np.array):
lut = get_ybr_to_rgb_lut()
return lut[pixels[..., 0], pixels[..., 1], pixels[..., 2]]
def get_ybr_to_rgb_lut(save_lut=True):
global _ybr_to_rgb_lut
# return lut if already exists
if _ybr_to_rgb_lut is not None:
return _ybr_to_rgb_lut
# try loading from file
lut_path = Path(__file__).parent / 'ybr_to_rgb_lut.npy'
if lut_path.is_file():
_ybr_to_rgb_lut = np.load(lut_path)
return _ybr_to_rgb_lut
# else generate lut
a = np.arange(2 ** 8, dtype=np.uint8)
ybr = np.concatenate(np.broadcast_arrays(a[:, None, None, None], a[None, :, None, None], a[None, None, :, None]), axis=-1)
_ybr_to_rgb_lut = dicom.pixel_data_handlers.util.convert_color_space(ybr, 'YBR_FULL', 'RGB')
if save_lut:
np.save(lut_path, _ybr_to_rgb_lut)
return _ybr_to_rgb_lut
def read_video(
path,
n_frames=None,
sample_period=1,
out_fps=None,
fps=None,
frame_interpolation=True,
random_start=False,
res=None,
interpolation=cv2.INTER_CUBIC,
zoom: float = 0,
region=None # (i_start, i_end, j_start, j_end)
):
# Check path
path = Path(path)
if not path.exists():
raise FileNotFoundError(path)
# Get video properties
cap = cv2.VideoCapture(str(path))
vid_size = (
int(cap.get(cv2.CAP_PROP_FRAME_COUNT)),
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
)
if fps is None:
fps = cap.get(cv2.CAP_PROP_FPS)
if out_fps is not None:
sample_period = 1
# Figuring out how many frames to read, and at what stride, to achieve the target
# output FPS if one is given.
if n_frames is not None:
out_n_frames = n_frames
n_frames = int(np.ceil((n_frames - 1) * fps / out_fps + 1))
else:
out_n_frames = int(np.floor((vid_size[0] - 1) * out_fps / fps + 1))
# Setup output array
if n_frames is None:
n_frames = vid_size[0] // sample_period
if n_frames * sample_period > vid_size[0]:
raise Exception(
f"{n_frames} frames requested (with sample period {sample_period}) but video length is only {vid_size[0]} frames"
)
if res is not None:
out = np.zeros((n_frames, res[1], res[0], 3), dtype=np.uint8)
else:
if region is None:
out = np.zeros((n_frames, *vid_size[1:], 3), dtype=np.uint8)
else:
out = np.zeros((n_frames, region[1] - region[0], region[3] - region[2]), dtype=np.uint8)
# Read video, skipping sample_period frames each time
if random_start:
si = np.random.randint(vid_size[0] - n_frames * sample_period + 1)
cap.set(cv2.CAP_PROP_POS_FRAMES, si)
for frame_i in range(n_frames):
_, frame = cap.read()
if region is not None:
frame = frame[region[0]:region[1], region[2]:region[3]]
if res is not None:
frame = crop_and_scale(frame, res, interpolation, zoom)
out[frame_i] = frame
for _ in range(sample_period - 1):
cap.read()
cap.release()
# if a particular output fps is desired, either get the closest frames from the input video
# or interpolate neighboring frames to achieve the fps without frame stutters.
if out_fps is not None:
i = np.arange(out_n_frames) * fps / out_fps
if frame_interpolation:
out_0 = out[np.floor(i).astype(int)]
out_1 = out[np.ceil(i).astype(int)]
t = (i % 1)[:, None, None, None]
out = (1 - t) * out_0 + t * out_1
else:
out = out[np.round(i).astype(int)]
if n_frames == 1:
out = np.squeeze(out)
return out, vid_size, fps