Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| from dataclasses import dataclass | |
| from typing import Optional, Any | |
| from comfy.ldm.modules.attention import optimized_attention_for_device | |
| import comfy.model_management | |
| import comfy.ldm.common_dit | |
| import comfy.model_management | |
| class Llama2Config: | |
| vocab_size: int = 128320 | |
| hidden_size: int = 4096 | |
| intermediate_size: int = 14336 | |
| num_hidden_layers: int = 32 | |
| num_attention_heads: int = 32 | |
| num_key_value_heads: int = 8 | |
| max_position_embeddings: int = 8192 | |
| rms_norm_eps: float = 1e-5 | |
| rope_theta: float = 500000.0 | |
| transformer_type: str = "llama" | |
| head_dim = 128 | |
| rms_norm_add = False | |
| mlp_activation = "silu" | |
| class Gemma2_2B_Config: | |
| vocab_size: int = 256000 | |
| hidden_size: int = 2304 | |
| intermediate_size: int = 9216 | |
| num_hidden_layers: int = 26 | |
| num_attention_heads: int = 8 | |
| num_key_value_heads: int = 4 | |
| max_position_embeddings: int = 8192 | |
| rms_norm_eps: float = 1e-6 | |
| rope_theta: float = 10000.0 | |
| transformer_type: str = "gemma2" | |
| head_dim = 256 | |
| rms_norm_add = True | |
| mlp_activation = "gelu_pytorch_tanh" | |
| class RMSNorm(nn.Module): | |
| def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None): | |
| super().__init__() | |
| self.eps = eps | |
| self.weight = nn.Parameter(torch.empty(dim, device=device, dtype=dtype)) | |
| self.add = add | |
| def forward(self, x: torch.Tensor): | |
| w = self.weight | |
| if self.add: | |
| w = w + 1.0 | |
| return comfy.ldm.common_dit.rms_norm(x, w, self.eps) | |
| def rotate_half(x): | |
| """Rotates half the hidden dims of the input.""" | |
| x1 = x[..., : x.shape[-1] // 2] | |
| x2 = x[..., x.shape[-1] // 2 :] | |
| return torch.cat((-x2, x1), dim=-1) | |
| def precompute_freqs_cis(head_dim, seq_len, theta, device=None): | |
| theta_numerator = torch.arange(0, head_dim, 2, device=device).float() | |
| inv_freq = 1.0 / (theta ** (theta_numerator / head_dim)) | |
| position_ids = torch.arange(0, seq_len, device=device).unsqueeze(0) | |
| inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | |
| position_ids_expanded = position_ids[:, None, :].float() | |
| freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| cos = emb.cos() | |
| sin = emb.sin() | |
| return (cos, sin) | |
| def apply_rope(xq, xk, freqs_cis): | |
| cos = freqs_cis[0].unsqueeze(1) | |
| sin = freqs_cis[1].unsqueeze(1) | |
| q_embed = (xq * cos) + (rotate_half(xq) * sin) | |
| k_embed = (xk * cos) + (rotate_half(xk) * sin) | |
| return q_embed, k_embed | |
| class Attention(nn.Module): | |
| def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None): | |
| super().__init__() | |
| self.num_heads = config.num_attention_heads | |
| self.num_kv_heads = config.num_key_value_heads | |
| self.hidden_size = config.hidden_size | |
| self.head_dim = config.head_dim | |
| self.inner_size = self.num_heads * self.head_dim | |
| ops = ops or nn | |
| self.q_proj = ops.Linear(config.hidden_size, self.inner_size, bias=False, device=device, dtype=dtype) | |
| self.k_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype) | |
| self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype) | |
| self.o_proj = ops.Linear(self.inner_size, config.hidden_size, bias=False, device=device, dtype=dtype) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| freqs_cis: Optional[torch.Tensor] = None, | |
| optimized_attention=None, | |
| ): | |
| batch_size, seq_length, _ = hidden_states.shape | |
| xq = self.q_proj(hidden_states) | |
| xk = self.k_proj(hidden_states) | |
| xv = self.v_proj(hidden_states) | |
| xq = xq.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) | |
| xk = xk.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2) | |
| xv = xv.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2) | |
| xq, xk = apply_rope(xq, xk, freqs_cis=freqs_cis) | |
| xk = xk.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1) | |
| xv = xv.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1) | |
| output = optimized_attention(xq, xk, xv, self.num_heads, mask=attention_mask, skip_reshape=True) | |
| return self.o_proj(output) | |
| class MLP(nn.Module): | |
| def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None): | |
| super().__init__() | |
| ops = ops or nn | |
| self.gate_proj = ops.Linear(config.hidden_size, config.intermediate_size, bias=False, device=device, dtype=dtype) | |
| self.up_proj = ops.Linear(config.hidden_size, config.intermediate_size, bias=False, device=device, dtype=dtype) | |
| self.down_proj = ops.Linear(config.intermediate_size, config.hidden_size, bias=False, device=device, dtype=dtype) | |
| if config.mlp_activation == "silu": | |
| self.activation = torch.nn.functional.silu | |
| elif config.mlp_activation == "gelu_pytorch_tanh": | |
| self.activation = lambda a: torch.nn.functional.gelu(a, approximate="tanh") | |
| def forward(self, x): | |
| return self.down_proj(self.activation(self.gate_proj(x)) * self.up_proj(x)) | |
| class TransformerBlock(nn.Module): | |
| def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None): | |
| super().__init__() | |
| self.self_attn = Attention(config, device=device, dtype=dtype, ops=ops) | |
| self.mlp = MLP(config, device=device, dtype=dtype, ops=ops) | |
| self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, device=device, dtype=dtype) | |
| self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, device=device, dtype=dtype) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| freqs_cis: Optional[torch.Tensor] = None, | |
| optimized_attention=None, | |
| ): | |
| # Self Attention | |
| residual = x | |
| x = self.input_layernorm(x) | |
| x = self.self_attn( | |
| hidden_states=x, | |
| attention_mask=attention_mask, | |
| freqs_cis=freqs_cis, | |
| optimized_attention=optimized_attention, | |
| ) | |
| x = residual + x | |
| # MLP | |
| residual = x | |
| x = self.post_attention_layernorm(x) | |
| x = self.mlp(x) | |
| x = residual + x | |
| return x | |
| class TransformerBlockGemma2(nn.Module): | |
| def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None): | |
| super().__init__() | |
| self.self_attn = Attention(config, device=device, dtype=dtype, ops=ops) | |
| self.mlp = MLP(config, device=device, dtype=dtype, ops=ops) | |
| self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) | |
| self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) | |
| self.pre_feedforward_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) | |
| self.post_feedforward_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| freqs_cis: Optional[torch.Tensor] = None, | |
| optimized_attention=None, | |
| ): | |
| # Self Attention | |
| residual = x | |
| x = self.input_layernorm(x) | |
| x = self.self_attn( | |
| hidden_states=x, | |
| attention_mask=attention_mask, | |
| freqs_cis=freqs_cis, | |
| optimized_attention=optimized_attention, | |
| ) | |
| x = self.post_attention_layernorm(x) | |
| x = residual + x | |
| # MLP | |
| residual = x | |
| x = self.pre_feedforward_layernorm(x) | |
| x = self.mlp(x) | |
| x = self.post_feedforward_layernorm(x) | |
| x = residual + x | |
| return x | |
| class Llama2_(nn.Module): | |
| def __init__(self, config, device=None, dtype=None, ops=None): | |
| super().__init__() | |
| self.config = config | |
| self.vocab_size = config.vocab_size | |
| self.embed_tokens = ops.Embedding( | |
| config.vocab_size, | |
| config.hidden_size, | |
| device=device, | |
| dtype=dtype | |
| ) | |
| if self.config.transformer_type == "gemma2": | |
| transformer = TransformerBlockGemma2 | |
| self.normalize_in = True | |
| else: | |
| transformer = TransformerBlock | |
| self.normalize_in = False | |
| self.layers = nn.ModuleList([ | |
| transformer(config, device=device, dtype=dtype, ops=ops) | |
| for _ in range(config.num_hidden_layers) | |
| ]) | |
| self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) | |
| # self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype) | |
| def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None): | |
| if embeds is not None: | |
| x = embeds | |
| else: | |
| x = self.embed_tokens(x, out_dtype=dtype) | |
| if self.normalize_in: | |
| x *= self.config.hidden_size ** 0.5 | |
| freqs_cis = precompute_freqs_cis(self.config.head_dim, | |
| x.shape[1], | |
| self.config.rope_theta, | |
| device=x.device) | |
| mask = None | |
| if attention_mask is not None: | |
| mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) | |
| mask = mask.masked_fill(mask.to(torch.bool), float("-inf")) | |
| causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1) | |
| if mask is not None: | |
| mask += causal_mask | |
| else: | |
| mask = causal_mask | |
| optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True) | |
| intermediate = None | |
| if intermediate_output is not None: | |
| if intermediate_output < 0: | |
| intermediate_output = len(self.layers) + intermediate_output | |
| for i, layer in enumerate(self.layers): | |
| x = layer( | |
| x=x, | |
| attention_mask=mask, | |
| freqs_cis=freqs_cis, | |
| optimized_attention=optimized_attention, | |
| ) | |
| if i == intermediate_output: | |
| intermediate = x.clone() | |
| x = self.norm(x) | |
| if intermediate is not None and final_layer_norm_intermediate: | |
| intermediate = self.norm(intermediate) | |
| return x, intermediate | |
| class BaseLlama: | |
| def get_input_embeddings(self): | |
| return self.model.embed_tokens | |
| def set_input_embeddings(self, embeddings): | |
| self.model.embed_tokens = embeddings | |
| def forward(self, input_ids, *args, **kwargs): | |
| return self.model(input_ids, *args, **kwargs) | |
| class Llama2(BaseLlama, torch.nn.Module): | |
| def __init__(self, config_dict, dtype, device, operations): | |
| super().__init__() | |
| config = Llama2Config(**config_dict) | |
| self.num_layers = config.num_hidden_layers | |
| self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) | |
| self.dtype = dtype | |
| class Gemma2_2B(BaseLlama, torch.nn.Module): | |
| def __init__(self, config_dict, dtype, device, operations): | |
| super().__init__() | |
| config = Gemma2_2B_Config(**config_dict) | |
| self.num_layers = config.num_hidden_layers | |
| self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) | |
| self.dtype = dtype | |