chatbot / app.py
mobinln's picture
feat: setup local Qwen2 0.5
6da1c26
raw
history blame
1.54 kB
import gradio as gr
from llama_cpp import Llama
model = "Qwen/Qwen1.5-0.5B-Chat-GGUF"
llm = Llama.from_pretrained(repo_id=model, filename="*q8_0.gguf", verbose=True)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = llm.create_chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
return response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a helpful assistant.",
label="System message",
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
description=model,
)
if __name__ == "__main__":
demo.launch()