moazx's picture
Update app.py
dde6b42 verified
import gradio as gr
from PIL import Image
from joblib import load
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import efficientnet_b0
import torchvision.transforms as transforms
class MultiModalClassifier(nn.Module):
def __init__(self, num_classes, num_features):
super(MultiModalClassifier, self).__init__()
# Load pre-trained EfficientNet model
efficientnet = efficientnet_b0(pretrained=True)
# Remove the last classifier layer
self.efficientnet_features = nn.Sequential(*list(efficientnet.children())[:-1])
# Define additional feature dimensions
self.age_dim = 1 # assuming age is a single scalar value
self.anatom_site_dim = 1 # assuming anatomical site is a single scalar value
self.sex_dim = 1 # assuming sex is a single scalar value
# Fully connected layers for classification
self.fc1 = nn.Linear(num_features + self.age_dim + self.anatom_site_dim + self.sex_dim, 256)
self.fc2 = nn.Linear(256, num_classes)
# Dropout layer.
self.dropout = nn.Dropout(p=0.5)
def forward(self, image, age, anatom_site, sex):
# Forward pass through the pre-trained EfficientNet model
image_features = self.efficientnet_features(image)
image_features = F.avg_pool2d(image_features, image_features.size()[2:]).view(image.size(0), -1) # Flatten
# Reshape age, anatom_site, and sex tensors
age = age.view(-1, 1) # Reshape to [batch_size, 1]
anatom_site = anatom_site.view(-1, 1) # Reshape to [batch_size, 1]
sex = sex.view(-1, 1) # Reshape to [batch_size, 1]
# Concatenate image features with additional features
additional_features = torch.cat((age, anatom_site, sex), dim=1)
combined_features = torch.cat((image_features, additional_features), dim=1)
# Fully connected layers for classification
combined_features = F.relu(self.fc1(combined_features))
combined_features = self.dropout(combined_features)
output = self.fc2(combined_features)
return output
# Initialize the model
num_classes = 1 # Assuming binary classification
num_features = 1280 # Number of features extracted by EfficientNet-B0
model = MultiModalClassifier(num_classes, num_features)
# Load the saved model state dictionary
model.load_state_dict(torch.load(r'best_epoch_weights.pth',map_location=torch.device('cpu')))
# Set the model to evaluation mode
model.eval()
# Load the age scaler
age_scaler = load(r'age_approx_scaler.joblib')
# Define transforms for the data (adjust as necessary.)
test_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
])
diagnosis_map = {0: 'benign', 1: 'malignant'}
# Define mapping dictionaries for sexes and anatom_sites.
sexes_mapping = {'male': 0, 'female': 1}
# Define mapping dictionary for anatom_site_general.
anatom_site_mapping = {
'torso': 0,
'lower extremity': 1,
'head/neck': 2,
'upper extremity': 3,
'palms/soles': 4,
'oral/genital': 5,
}
def predict(image, age, gender, anatom_site):
image = Image.fromarray(image)
# Apply transformations to the image
image = test_transform(image)
image = image.float()
image = image.unsqueeze(0) # Add batch dimension
sex = torch.tensor([[sexes_mapping[gender.lower()]]], dtype=torch.float32)
anatom_site = torch.tensor([[anatom_site_mapping[anatom_site]]], dtype=torch.float32)
# Scale the age using the loaded scaler
scaled_age = age_scaler.transform([[age]])
# Convert scaled age to a tensor
age_tensor = torch.tensor(np.array(scaled_age), dtype=torch.float32)
# Forward pass
output = model(image, age_tensor, anatom_site, sex)
# Apply sigmoid to the output (since it's a binary classification)
output_sigmoid = torch.sigmoid(output)
# Get the predicted class (0 or 1)
predicted_class = (output_sigmoid > 0.5).float()
return f"The predicted_class is a {diagnosis_map[int(predicted_class)]}."
description_html = """
Fill in the required parameters and click 'classify'.
"""
example_data = [
["ISIC_0000060_downsampled.jpg", 35, "Female", "torso"],
["ISIC_0068279.jpg", 45.0, "Female", "head/neck"]
]
inputs = [
"image",
gr.Number(label="Age", minimum=0, maximum=120),
gr.Dropdown(['Male', 'Female'], label="Gender"),
gr.Dropdown(['torso', 'lower extremity', 'head/neck', 'upper extremity', 'palms/soles', 'oral/genital'], label="Anatomical Site")
]
gr.Interface(
predict,
inputs,
outputs = gr.Textbox(label="Output", type="text"),
title="Skin Cancer Diagnosis",
description=description_html,
allow_flagging='never',
examples=example_data
).launch()