mnurbani commited on
Commit
b86ad28
·
verified ·
1 Parent(s): 64dd90b

Upload 3 files

Browse files
app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pickle
3
+ import pandas as pd
4
+
5
+ # Load model from file
6
+ model_path = 'model_rfbest_pipe_rfbest_pipe_rfbest_pipe_rf.pkl'
7
+ with open(model_path, 'rb') as file:
8
+ model = pickle.load(file)
9
+
10
+ # Judul aplikasi
11
+ st.title("Prediksi Churn Pelanggan")
12
+
13
+ # Form untuk input data
14
+ st.subheader("Masukkan Data Pelanggan")
15
+
16
+ # Input data pelanggan
17
+ gender = st.selectbox('Gender', ['Female', 'Male'])
18
+ senior_citizen = st.selectbox('Senior Citizen', [0, 1])
19
+ partner = st.selectbox('Partner', ['Yes', 'No'])
20
+ dependents = st.selectbox('Dependents', ['Yes', 'No'])
21
+ tenure = st.number_input('Tenure (bulan)', min_value=0, max_value=72, value=45)
22
+ phone_service = st.selectbox('Phone Service', ['Yes', 'No'])
23
+ multiple_lines = st.selectbox('Multiple Lines', ['Yes', 'No'])
24
+ internet_service = st.selectbox('Internet Service', ['DSL', 'Fiber optic', 'No'])
25
+ online_security = st.selectbox('Online Security', ['Yes', 'No'])
26
+ online_backup = st.selectbox('Online Backup', ['Yes', 'No'])
27
+ device_protection = st.selectbox('Device Protection', ['Yes', 'No'])
28
+ tech_support = st.selectbox('Tech Support', ['Yes', 'No'])
29
+ streaming_tv = st.selectbox('Streaming TV', ['Yes', 'No'])
30
+ streaming_movies = st.selectbox('Streaming Movies', ['Yes', 'No'])
31
+ contract = st.selectbox('Contract', ['Month-to-month', 'One year', 'Two year'])
32
+ paperless_billing = st.selectbox('Paperless Billing', ['Yes', 'No'])
33
+ payment_method = st.selectbox('Payment Method', ['Electronic check', 'Mailed check', 'Bank transfer (automatic)', 'Credit card (automatic)'])
34
+ monthly_charges = st.number_input('Monthly Charges', min_value=0.0, value=70.35)
35
+ total_charges = st.number_input('Total Charges', min_value=0.0, value=346.45)
36
+
37
+ # Membuat DataFrame dari input
38
+ data_baru = {
39
+ 'gender': [gender],
40
+ 'SeniorCitizen': [senior_citizen],
41
+ 'Partner': [partner],
42
+ 'Dependents': [dependents],
43
+ 'tenure': [tenure],
44
+ 'PhoneService': [phone_service],
45
+ 'MultipleLines': [multiple_lines],
46
+ 'InternetService': [internet_service],
47
+ 'OnlineSecurity': [online_security],
48
+ 'OnlineBackup': [online_backup],
49
+ 'DeviceProtection': [device_protection],
50
+ 'TechSupport': [tech_support],
51
+ 'StreamingTV': [streaming_tv],
52
+ 'StreamingMovies': [streaming_movies],
53
+ 'Contract': [contract],
54
+ 'PaperlessBilling': [paperless_billing],
55
+ 'PaymentMethod': [payment_method],
56
+ 'MonthlyCharges': [monthly_charges],
57
+ 'TotalCharges': [total_charges]
58
+ }
59
+
60
+ df_baru = pd.DataFrame(data_baru)
61
+
62
+ # Melakukan encoding pada data kategorikal
63
+ categorical_columns = df_baru.select_dtypes(include=['object']).columns
64
+ df_baru = pd.get_dummies(df_baru, columns=categorical_columns, drop_first=True)
65
+
66
+ # Menampilkan data yang dimasukkan pengguna
67
+ st.subheader("Data Pelanggan yang Dimasukkan:")
68
+ st.write(df_baru)
69
+
70
+ # Tombol untuk melakukan prediksi
71
+ if st.button('Prediction'):
72
+ # Prediksi churn
73
+ prediksi = model.predict(df_baru)
74
+
75
+ # Menampilkan hasil prediksi
76
+ if prediksi[0] == 1:
77
+ hasil = 'Yes'
78
+ else:
79
+ hasil = 'No'
80
+
81
+ st.subheader(f"Hasil Prediksi Churn: {hasil}")
82
+
83
+ # Probabilitas churn
84
+ probabilitas = model.predict_proba(df_baru)[:, 1]
85
+ st.subheader(f"Probabilitas Churn: {probabilitas[0]:.2f}")
joblibmodel_rfbest_pipe_rfbest_pipe_rfbest_pipe_rf.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2a2fef439a32b9b0bf4f82360f3b01fea4d19a0ced4e9234c409fc592a5fedb
3
+ size 2564897
model_rfbest_pipe_rfbest_pipe_rfbest_pipe_rf.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b59f7b71ca9e16ad271caf15b5179ff13fb4aad3170285c5bfa8d15eb85f7e7f
3
+ size 2566052