qubvel-hf's picture
qubvel-hf HF Staff
fix division by zero
6ba49bf
import os
import cv2
import tqdm
import uuid
import logging
import torch
import spaces
import trackers
import numpy as np
import gradio as gr
import imageio.v3 as iio
import supervision as sv
from pathlib import Path
from functools import lru_cache
from typing import List, Optional, Tuple
from PIL import Image
from transformers import AutoModelForObjectDetection, AutoImageProcessor
from transformers.image_utils import load_image
# Configuration constants
CHECKPOINTS = [
"ustc-community/dfine-medium-obj2coco",
"ustc-community/dfine-medium-coco",
"ustc-community/dfine-medium-obj365",
"ustc-community/dfine-nano-coco",
"ustc-community/dfine-small-coco",
"ustc-community/dfine-large-coco",
"ustc-community/dfine-xlarge-coco",
"ustc-community/dfine-small-obj365",
"ustc-community/dfine-large-obj365",
"ustc-community/dfine-xlarge-obj365",
"ustc-community/dfine-small-obj2coco",
"ustc-community/dfine-large-obj2coco-e25",
"ustc-community/dfine-xlarge-obj2coco",
]
DEFAULT_CHECKPOINT = CHECKPOINTS[0]
DEFAULT_CONFIDENCE_THRESHOLD = 0.3
TORCH_DTYPE = torch.float32
# Image
IMAGE_EXAMPLES = [
{"path": "./examples/images/tennis.jpg", "use_url": False, "url": "", "label": "Local Image"},
{"path": "./examples/images/dogs.jpg", "use_url": False, "url": "", "label": "Local Image"},
{"path": "./examples/images/nascar.jpg", "use_url": False, "url": "", "label": "Local Image"},
{"path": "./examples/images/crossroad.jpg", "use_url": False, "url": "", "label": "Local Image"},
{
"path": None,
"use_url": True,
"url": "https://live.staticflickr.com/65535/33021460783_1646d43c54_b.jpg",
"label": "Flickr Image",
},
]
# Video
MAX_NUM_FRAMES = 250
BATCH_SIZE = 4
ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}
VIDEO_OUTPUT_DIR = Path("static/videos")
VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
class TrackingAlgorithm:
BYTETRACK = "ByteTrack (2021)"
DEEPSORT = "DeepSORT (2017)"
SORT = "SORT (2016)"
TRACKERS = [None, TrackingAlgorithm.BYTETRACK, TrackingAlgorithm.DEEPSORT, TrackingAlgorithm.SORT]
VIDEO_EXAMPLES = [
{"path": "./examples/videos/dogs_running.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
{"path": "./examples/videos/traffic.mp4", "label": "Local Video", "tracker": TrackingAlgorithm.BYTETRACK, "classes": "car, truck, bus"},
{"path": "./examples/videos/fast_and_furious.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
{"path": "./examples/videos/break_dance.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
]
# Create a color palette for visualization
# These hex color codes define different colors for tracking different objects
color = sv.ColorPalette.from_hex([
"#ffff00", "#ff9b00", "#ff8080", "#ff66b2", "#ff66ff", "#b266ff",
"#9999ff", "#3399ff", "#66ffff", "#33ff99", "#66ff66", "#99ff00"
])
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
@lru_cache(maxsize=3)
def get_model_and_processor(checkpoint: str):
model = AutoModelForObjectDetection.from_pretrained(checkpoint, torch_dtype=TORCH_DTYPE)
image_processor = AutoImageProcessor.from_pretrained(checkpoint)
return model, image_processor
@spaces.GPU(duration=20)
def detect_objects(
checkpoint: str,
images: List[np.ndarray] | np.ndarray,
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
target_size: Optional[Tuple[int, int]] = None,
batch_size: int = BATCH_SIZE,
classes: Optional[List[str]] = None,
):
device = "cuda" if torch.cuda.is_available() else "cpu"
model, image_processor = get_model_and_processor(checkpoint)
model = model.to(device)
if classes is not None:
wrong_classes = [cls for cls in classes if cls not in model.config.label2id]
if wrong_classes:
gr.Warning(f"Classes not found in model config: {wrong_classes}")
keep_ids = [model.config.label2id[cls] for cls in classes if cls in model.config.label2id]
else:
keep_ids = None
if isinstance(images, np.ndarray) and images.ndim == 4:
images = [x for x in images] # split video array into list of images
batches = [images[i:i + batch_size] for i in range(0, len(images), batch_size)]
results = []
for batch in tqdm.tqdm(batches, desc="Processing frames"):
# preprocess images
inputs = image_processor(images=batch, return_tensors="pt")
inputs = inputs.to(device).to(TORCH_DTYPE)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# postprocess outputs
if target_size:
target_sizes = [target_size] * len(batch)
else:
target_sizes = [(image.shape[0], image.shape[1]) for image in batch]
batch_results = image_processor.post_process_object_detection(
outputs, target_sizes=target_sizes, threshold=confidence_threshold
)
results.extend(batch_results)
# move results to cpu
for i, result in enumerate(results):
results[i] = {k: v.cpu() for k, v in result.items()}
if keep_ids is not None:
keep = torch.isin(results[i]["labels"], torch.tensor(keep_ids))
results[i] = {k: v[keep] for k, v in results[i].items()}
return results, model.config.id2label
def process_image(
checkpoint: str = DEFAULT_CHECKPOINT,
image: Optional[Image.Image] = None,
url: Optional[str] = None,
use_url: bool = False,
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
):
if not use_url:
url = None
if (image is None) ^ bool(url):
raise ValueError(f"Either image or url must be provided, but not both.")
if url:
image = load_image(url)
results, id2label = detect_objects(
checkpoint=checkpoint,
images=[np.array(image)],
confidence_threshold=confidence_threshold,
)
result = results[0] # first image in batch (we have batch size 1)
annotations = []
for label, score, box in zip(result["labels"], result["scores"], result["boxes"]):
text_label = id2label[label.item()]
formatted_label = f"{text_label} ({score:.2f})"
x_min, y_min, x_max, y_max = box.cpu().numpy().round().astype(int)
x_min = max(0, x_min)
y_min = max(0, y_min)
x_max = min(image.width - 1, x_max)
y_max = min(image.height - 1, y_max)
annotations.append(((x_min, y_min, x_max, y_max), formatted_label))
return (image, annotations)
def get_target_size(image_height, image_width, max_size: int):
if image_height < max_size and image_width < max_size:
new_height, new_width = image_height, image_width
elif image_height > image_width:
new_height = max_size
new_width = int(image_width * max_size / image_height)
else:
new_width = max_size
new_height = int(image_height * max_size / image_width)
# make even (for video codec compatibility)
new_height = new_height // 2 * 2
new_width = new_width // 2 * 2
return new_width, new_height
def read_video_k_frames(video_path: str, k: int, read_every_i_frame: int = 1):
cap = cv2.VideoCapture(video_path)
frames = []
i = 0
progress_bar = tqdm.tqdm(total=k, desc="Reading frames")
while cap.isOpened() and len(frames) < k:
ret, frame = cap.read()
if not ret:
break
if i % read_every_i_frame == 0:
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
progress_bar.update(1)
i += 1
cap.release()
progress_bar.close()
return frames
def get_tracker(tracker: str, fps: float):
if tracker == TrackingAlgorithm.SORT:
return trackers.SORTTracker(frame_rate=fps)
elif tracker == TrackingAlgorithm.DEEPSORT:
feature_extractor = trackers.DeepSORTFeatureExtractor.from_timm("mobilenetv4_conv_small.e1200_r224_in1k", device="cpu")
return trackers.DeepSORTTracker(feature_extractor, frame_rate=fps)
elif tracker == TrackingAlgorithm.BYTETRACK:
return sv.ByteTrack(frame_rate=int(fps))
else:
raise ValueError(f"Invalid tracker: {tracker}")
def update_tracker(tracker, detections, frame):
tracker_name = tracker.__class__.__name__
if tracker_name == "SORTTracker":
return tracker.update(detections)
elif tracker_name == "DeepSORTTracker":
return tracker.update(detections, frame)
elif tracker_name == "ByteTrack":
return tracker.update_with_detections(detections)
else:
raise ValueError(f"Invalid tracker: {tracker}")
def process_video(
video_path: str,
checkpoint: str,
tracker_algorithm: Optional[str] = None,
classes: str = "all",
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> str:
if not video_path or not os.path.isfile(video_path):
raise ValueError(f"Invalid video path: {video_path}")
ext = os.path.splitext(video_path)[1].lower()
if ext not in ALLOWED_VIDEO_EXTENSIONS:
raise ValueError(f"Unsupported video format: {ext}, supported formats: {ALLOWED_VIDEO_EXTENSIONS}")
video_info = sv.VideoInfo.from_video_path(video_path)
read_each_i_frame = max(1, video_info.fps // 25)
target_fps = video_info.fps / read_each_i_frame
target_width, target_height = get_target_size(video_info.height, video_info.width, 1080)
n_frames_to_read = min(MAX_NUM_FRAMES, video_info.total_frames // read_each_i_frame)
frames = read_video_k_frames(video_path, n_frames_to_read, read_each_i_frame)
frames = [cv2.resize(frame, (target_width, target_height), interpolation=cv2.INTER_CUBIC) for frame in frames]
# Set the color lookup mode to assign colors by track ID
# This mean objects with the same track ID will be annotated by the same color
color_lookup = sv.ColorLookup.TRACK if tracker_algorithm else sv.ColorLookup.CLASS
box_annotator = sv.BoxAnnotator(color, color_lookup=color_lookup, thickness=1)
label_annotator = sv.LabelAnnotator(color, color_lookup=color_lookup, text_scale=0.5)
trace_annotator = sv.TraceAnnotator(color, color_lookup=color_lookup, thickness=1, trace_length=100)
# preprocess classes
if classes != "all":
classes_list = [cls.strip().lower() for cls in classes.split(",")]
else:
classes_list = None
results, id2label = detect_objects(
images=np.array(frames),
checkpoint=checkpoint,
confidence_threshold=confidence_threshold,
target_size=(target_height, target_width),
classes=classes_list,
)
annotated_frames = []
# detections
if tracker_algorithm:
tracker = get_tracker(tracker_algorithm, target_fps)
for frame, result in progress.tqdm(zip(frames, results), desc="Tracking objects", total=len(frames)):
detections = sv.Detections.from_transformers(result, id2label=id2label)
detections = detections.with_nms(threshold=0.95, class_agnostic=True)
detections = update_tracker(tracker, detections, frame)
labels = [f"#{tracker_id} {id2label[class_id]}" for class_id, tracker_id in zip(detections.class_id, detections.tracker_id)]
annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
annotated_frame = trace_annotator.annotate(scene=annotated_frame, detections=detections)
annotated_frames.append(annotated_frame)
else:
for frame, result in tqdm.tqdm(zip(frames, results), desc="Annotating frames", total=len(frames)):
detections = sv.Detections.from_transformers(result, id2label=id2label)
detections = detections.with_nms(threshold=0.95, class_agnostic=True)
annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections)
annotated_frames.append(annotated_frame)
output_filename = os.path.join(VIDEO_OUTPUT_DIR, f"output_{uuid.uuid4()}.mp4")
iio.imwrite(output_filename, annotated_frames, fps=target_fps, codec="h264")
return output_filename
def create_image_inputs() -> List[gr.components.Component]:
return [
gr.Image(
label="Upload Image",
type="pil",
sources=["upload", "webcam"],
interactive=True,
elem_classes="input-component",
),
gr.Checkbox(label="Use Image URL Instead", value=False),
gr.Textbox(
label="Image URL",
placeholder="https://example.com/image.jpg",
visible=False,
elem_classes="input-component",
),
gr.Dropdown(
choices=CHECKPOINTS,
label="Select Model Checkpoint",
value=DEFAULT_CHECKPOINT,
elem_classes="input-component",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=DEFAULT_CONFIDENCE_THRESHOLD,
step=0.1,
label="Confidence Threshold",
elem_classes="input-component",
),
]
def create_video_inputs() -> List[gr.components.Component]:
return [
gr.Video(
label="Upload Video",
sources=["upload"],
interactive=True,
format="mp4", # Ensure MP4 format
elem_classes="input-component",
),
gr.Dropdown(
choices=CHECKPOINTS,
label="Select Model Checkpoint",
value=DEFAULT_CHECKPOINT,
elem_classes="input-component",
),
gr.Dropdown(
choices=TRACKERS,
label="Select Tracker (Optional)",
value=None,
elem_classes="input-component",
),
gr.TextArea(
label="Specify Class Names to Detect (comma separated)",
value="all",
lines=1,
elem_classes="input-component",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=DEFAULT_CONFIDENCE_THRESHOLD,
step=0.1,
label="Confidence Threshold",
elem_classes="input-component",
),
]
def create_button_row() -> List[gr.Button]:
return [
gr.Button(
f"Detect Objects", variant="primary", elem_classes="action-button"
),
gr.Button(f"Clear", variant="secondary", elem_classes="action-button"),
]
# Gradio interface
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
gr.Markdown(
"""
# Object Detection Demo
Experience state-of-the-art object detection with USTC's [D-FINE](https://huggingface.co/docs/transformers/main/model_doc/d_fine) models.
- **Image** and **Video** modes are supported.
- Select a model and adjust the confidence threshold to see detections!
- On video mode, you can enable tracking powered by [Supervision](https://github.com/roboflow/supervision) and [Trackers](https://github.com/roboflow/trackers) from Roboflow.
""",
elem_classes="header-text",
)
with gr.Tabs():
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1, min_width=300):
with gr.Group():
(
image_input,
use_url,
url_input,
image_model_checkpoint,
image_confidence_threshold,
) = create_image_inputs()
image_detect_button, image_clear_button = create_button_row()
with gr.Column(scale=2):
image_output = gr.AnnotatedImage(
label="Detection Results",
show_label=True,
color_map=None,
elem_classes="output-component",
)
gr.Examples(
examples=[
[
DEFAULT_CHECKPOINT,
example["path"],
example["url"],
example["use_url"],
DEFAULT_CONFIDENCE_THRESHOLD,
]
for example in IMAGE_EXAMPLES
],
inputs=[
image_model_checkpoint,
image_input,
url_input,
use_url,
image_confidence_threshold,
],
outputs=[image_output],
fn=process_image,
label="Select an image example to populate inputs",
cache_examples=True,
cache_mode="lazy",
)
with gr.Tab("Video"):
gr.Markdown(
f"The input video will be processed in ~25 FPS (up to {MAX_NUM_FRAMES} frames in result)."
)
with gr.Row():
with gr.Column(scale=1, min_width=300):
with gr.Group():
video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold = create_video_inputs()
video_detect_button, video_clear_button = create_button_row()
with gr.Column(scale=2):
video_output = gr.Video(
label="Detection Results",
format="mp4", # Explicit MP4 format
elem_classes="output-component",
)
gr.Examples(
examples=[
[example["path"], DEFAULT_CHECKPOINT, example["tracker"], example["classes"], DEFAULT_CONFIDENCE_THRESHOLD]
for example in VIDEO_EXAMPLES
],
inputs=[video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold],
outputs=[video_output],
fn=process_video,
cache_examples=False,
label="Select a video example to populate inputs",
)
# Dynamic visibility for URL input
use_url.change(
fn=lambda x: gr.update(visible=x),
inputs=use_url,
outputs=url_input,
)
# Image clear button
image_clear_button.click(
fn=lambda: (
None,
False,
"",
DEFAULT_CHECKPOINT,
DEFAULT_CONFIDENCE_THRESHOLD,
None,
),
outputs=[
image_input,
use_url,
url_input,
image_model_checkpoint,
image_confidence_threshold,
image_output,
],
)
# Video clear button
video_clear_button.click(
fn=lambda: (
None,
DEFAULT_CHECKPOINT,
None,
"all",
DEFAULT_CONFIDENCE_THRESHOLD,
None,
),
outputs=[
video_input,
video_checkpoint,
video_tracker,
video_classes,
video_confidence_threshold,
video_output,
],
)
# Image detect button
image_detect_button.click(
fn=process_image,
inputs=[
image_model_checkpoint,
image_input,
url_input,
use_url,
image_confidence_threshold,
],
outputs=[image_output],
)
# Video detect button
video_detect_button.click(
fn=process_video,
inputs=[video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold],
outputs=[video_output],
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()