Spaces:
Sleeping
Sleeping
from transformers import AutoFeatureExtractor, YolosForObjectDetection | |
import gradio as gr | |
from PIL import Image | |
import torch | |
import matplotlib.pyplot as plt | |
import io | |
import numpy as np | |
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], | |
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]] | |
def process_class_list(classes_string: str): | |
return [x.strip() for x in classes_string.split(",")] if classes_string else [] | |
def model_inference(img, model_name: str, prob_threshold: int, classes_to_show = str): | |
feature_extractor = AutoFeatureExtractor.from_pretrained(f"hustvl/{model_name}") | |
model = YolosForObjectDetection.from_pretrained(f"hustvl/{model_name}") | |
img = Image.fromarray(img) | |
pixel_values = feature_extractor(img, return_tensors="pt").pixel_values | |
with torch.no_grad(): | |
outputs = model(pixel_values, output_attentions=True) | |
probas = outputs.logits.softmax(-1)[0, :, :-1] | |
keep = probas.max(-1).values > prob_threshold | |
target_sizes = torch.tensor(img.size[::-1]).unsqueeze(0) | |
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes) | |
bboxes_scaled = postprocessed_outputs[0]['boxes'] | |
classes_list = process_class_list(classes_to_show) | |
return plot_results( | |
img, probas[keep], bboxes_scaled[keep], model, classes_list | |
) | |
def plot_results(pil_img, prob, boxes, model, classes_list): | |
plt.figure(figsize=(16,10)) | |
plt.imshow(pil_img) | |
ax = plt.gca() | |
colors = COLORS * 100 | |
for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors): | |
cl = p.argmax() | |
object_class = model.config.id2label[cl.item()] | |
if len(classes_list) > 0 : | |
if object_class not in classes_list: | |
continue | |
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, | |
fill=False, color=c, linewidth=3)) | |
text = f'{object_class}: {p[cl]:0.2f}' | |
ax.text(xmin, ymin, text, fontsize=15, | |
bbox=dict(facecolor='yellow', alpha=0.5)) | |
plt.axis('off') | |
return fig2img(plt.gcf()) | |
def fig2img(fig): | |
buf = io.BytesIO() | |
fig.savefig(buf) | |
buf.seek(0) | |
return Image.open(buf) | |
description = """ | |
Do you want to see what objects are in your images? Try our object detection app, powered by YOLOS, a state-of-the-art algorithm that can find and name multiple objects in a single image. | |
You can upload or drag and drop an image file to detect objects using YOLOS models. | |
You can also choose from different YOLOS models, adjust the probability threshold, and select the classes to use for detection. | |
Our app will show you the results in an interactive image with bounding boxes and labels for each detected object. | |
You can also download the results as an image file. Our app is fast, accurate, and easy to use. | |
Try it now and discover the power of object detection! 😊 | |
""" | |
image_in = gr.components.Image() | |
image_out = gr.components.Image() | |
model_choice = gr.components.Dropdown(["yolos-tiny", "yolos-small", "yolos-base", "yolos-small-300", "yolos-small-dwr"], value="yolos-small", label="YOLOS Model") | |
prob_threshold_slider = gr.components.Slider(minimum=0, maximum=1.0, step=0.01, value=0.9, label="Probability Threshold") | |
classes_to_show = gr.components.Textbox(placeholder="e.g. person, car , laptop", label="Classes to use (Optional)") | |
Iface = gr.Interface( | |
fn=model_inference, | |
inputs=[image_in,model_choice, prob_threshold_slider, classes_to_show], | |
outputs=image_out, | |
title="Object Detection With YOLO", | |
description=description, | |
theme='HaleyCH/HaleyCH_Theme', | |
).launch() |