Spaces:
Sleeping
Sleeping
primepake
commited on
Commit
·
541c6b7
1
Parent(s):
d1a6de9
add dac codec
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- dac-codec/assets/comparsion_stats.png +3 -0
- dac-codec/assets/objective_comparisons.png +3 -0
- dac-codec/conf/1gpu.yml +6 -0
- dac-codec/conf/ablations/baseline.yml +3 -0
- dac-codec/conf/ablations/diff-mb.yml +22 -0
- dac-codec/conf/ablations/equal-mb.yml +22 -0
- dac-codec/conf/ablations/no-adv.yml +9 -0
- dac-codec/conf/ablations/no-data-balance.yml +22 -0
- dac-codec/conf/ablations/no-low-hop.yml +18 -0
- dac-codec/conf/ablations/no-mb.yml +17 -0
- dac-codec/conf/ablations/no-mpd-msd.yml +21 -0
- dac-codec/conf/ablations/no-mpd.yml +21 -0
- dac-codec/conf/ablations/only-speech.yml +22 -0
- dac-codec/conf/base.yml +123 -0
- dac-codec/conf/downsampling/1024x.yml +16 -0
- dac-codec/conf/downsampling/128x.yml +16 -0
- dac-codec/conf/downsampling/1536x.yml +16 -0
- dac-codec/conf/downsampling/768x.yml +16 -0
- dac-codec/conf/final/16khz.yml +123 -0
- dac-codec/conf/final/24khz.yml +123 -0
- dac-codec/conf/final/44khz-16kbps.yml +124 -0
- dac-codec/conf/final/44khz.yml +123 -0
- dac-codec/conf/quantizer/24kbps.yml +5 -0
- dac-codec/conf/quantizer/256d.yml +5 -0
- dac-codec/conf/quantizer/2d.yml +5 -0
- dac-codec/conf/quantizer/32d.yml +5 -0
- dac-codec/conf/quantizer/4d.yml +5 -0
- dac-codec/conf/quantizer/512d.yml +5 -0
- dac-codec/conf/quantizer/dropout-0.0.yml +5 -0
- dac-codec/conf/quantizer/dropout-0.25.yml +5 -0
- dac-codec/conf/quantizer/dropout-0.5.yml +5 -0
- dac-codec/conf/size/medium.yml +5 -0
- dac-codec/conf/size/small.yml +5 -0
- dac-codec/dac/__init__.py +16 -0
- dac-codec/dac/__main__.py +36 -0
- dac-codec/dac/__pycache__/__init__.cpython-310.pyc +0 -0
- dac-codec/dac/__pycache__/__main__.cpython-310.pyc +0 -0
- dac-codec/dac/compare/__init__.py +0 -0
- dac-codec/dac/compare/encodec.py +54 -0
- dac-codec/dac/model/__init__.py +4 -0
- dac-codec/dac/model/__pycache__/__init__.cpython-310.pyc +0 -0
- dac-codec/dac/model/__pycache__/base.cpython-310.pyc +0 -0
- dac-codec/dac/model/__pycache__/dac.cpython-310.pyc +0 -0
- dac-codec/dac/model/__pycache__/discriminator.cpython-310.pyc +0 -0
- dac-codec/dac/model/base.py +294 -0
- dac-codec/dac/model/dac.py +364 -0
- dac-codec/dac/model/discriminator.py +228 -0
- dac-codec/dac/nn/__init__.py +3 -0
- dac-codec/dac/nn/__pycache__/__init__.cpython-310.pyc +0 -0
- dac-codec/dac/nn/__pycache__/layers.cpython-310.pyc +0 -0
dac-codec/assets/comparsion_stats.png
ADDED
|
Git LFS Details
|
dac-codec/assets/objective_comparisons.png
ADDED
|
Git LFS Details
|
dac-codec/conf/1gpu.yml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
|
| 4 |
+
batch_size: 12
|
| 5 |
+
val_batch_size: 12
|
| 6 |
+
num_workers: 4
|
dac-codec/conf/ablations/baseline.yml
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
dac-codec/conf/ablations/diff-mb.yml
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
Discriminator.sample_rate: 44100
|
| 6 |
+
Discriminator.fft_sizes: [2048, 1024, 512]
|
| 7 |
+
Discriminator.bands:
|
| 8 |
+
- [0.0, 0.05]
|
| 9 |
+
- [0.05, 0.1]
|
| 10 |
+
- [0.1, 0.25]
|
| 11 |
+
- [0.25, 0.5]
|
| 12 |
+
- [0.5, 1.0]
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# re-weight lambdas to make up for
|
| 16 |
+
# lost discriminators vs baseline
|
| 17 |
+
lambdas:
|
| 18 |
+
mel/loss: 15.0
|
| 19 |
+
adv/feat_loss: 5.0
|
| 20 |
+
adv/gen_loss: 1.0
|
| 21 |
+
vq/commitment_loss: 0.25
|
| 22 |
+
vq/codebook_loss: 1.0
|
dac-codec/conf/ablations/equal-mb.yml
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
Discriminator.sample_rate: 44100
|
| 6 |
+
Discriminator.fft_sizes: [2048, 1024, 512]
|
| 7 |
+
Discriminator.bands:
|
| 8 |
+
- [0.0, 0.2]
|
| 9 |
+
- [0.2, 0.4]
|
| 10 |
+
- [0.4, 0.6]
|
| 11 |
+
- [0.6, 0.8]
|
| 12 |
+
- [0.8, 1.0]
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# re-weight lambdas to make up for
|
| 16 |
+
# lost discriminators vs baseline
|
| 17 |
+
lambdas:
|
| 18 |
+
mel/loss: 15.0
|
| 19 |
+
adv/feat_loss: 5.0
|
| 20 |
+
adv/gen_loss: 1.0
|
| 21 |
+
vq/commitment_loss: 0.25
|
| 22 |
+
vq/codebook_loss: 1.0
|
dac-codec/conf/ablations/no-adv.yml
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
lambdas:
|
| 6 |
+
mel/loss: 1.0
|
| 7 |
+
waveform/loss: 1.0
|
| 8 |
+
vq/commitment_loss: 0.25
|
| 9 |
+
vq/codebook_loss: 1.0
|
dac-codec/conf/ablations/no-data-balance.yml
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
train/build_dataset.folders:
|
| 6 |
+
speech:
|
| 7 |
+
- /data/daps/train
|
| 8 |
+
- /data/vctk
|
| 9 |
+
- /data/vocalset
|
| 10 |
+
- /data/read_speech
|
| 11 |
+
- /data/french_speech
|
| 12 |
+
- /data/emotional_speech/
|
| 13 |
+
- /data/common_voice/
|
| 14 |
+
- /data/german_speech/
|
| 15 |
+
- /data/russian_speech/
|
| 16 |
+
- /data/spanish_speech/
|
| 17 |
+
music:
|
| 18 |
+
- /data/musdb/train
|
| 19 |
+
- /data/jamendo
|
| 20 |
+
general:
|
| 21 |
+
- /data/audioset/data/unbalanced_train_segments/
|
| 22 |
+
- /data/audioset/data/balanced_train_segments/
|
dac-codec/conf/ablations/no-low-hop.yml
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
MelSpectrogramLoss.n_mels: [80]
|
| 6 |
+
MelSpectrogramLoss.window_lengths: [512]
|
| 7 |
+
MelSpectrogramLoss.mel_fmin: [0]
|
| 8 |
+
MelSpectrogramLoss.mel_fmax: [null]
|
| 9 |
+
MelSpectrogramLoss.pow: 1.0
|
| 10 |
+
MelSpectrogramLoss.clamp_eps: 1.0e-5
|
| 11 |
+
MelSpectrogramLoss.mag_weight: 0.0
|
| 12 |
+
|
| 13 |
+
lambdas:
|
| 14 |
+
mel/loss: 100.0
|
| 15 |
+
adv/feat_loss: 2.0
|
| 16 |
+
adv/gen_loss: 1.0
|
| 17 |
+
vq/commitment_loss: 0.25
|
| 18 |
+
vq/codebook_loss: 1.0
|
dac-codec/conf/ablations/no-mb.yml
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
Discriminator.sample_rate: 44100
|
| 6 |
+
Discriminator.fft_sizes: [2048, 1024, 512]
|
| 7 |
+
Discriminator.bands:
|
| 8 |
+
- [0.0, 1.0]
|
| 9 |
+
|
| 10 |
+
# re-weight lambdas to make up for
|
| 11 |
+
# lost discriminators vs baseline
|
| 12 |
+
lambdas:
|
| 13 |
+
mel/loss: 15.0
|
| 14 |
+
adv/feat_loss: 5.0
|
| 15 |
+
adv/gen_loss: 1.0
|
| 16 |
+
vq/commitment_loss: 0.25
|
| 17 |
+
vq/codebook_loss: 1.0
|
dac-codec/conf/ablations/no-mpd-msd.yml
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
Discriminator.sample_rate: 44100
|
| 6 |
+
Discriminator.rates: []
|
| 7 |
+
Discriminator.periods: []
|
| 8 |
+
Discriminator.fft_sizes: [2048, 1024, 512]
|
| 9 |
+
Discriminator.bands:
|
| 10 |
+
- [0.0, 0.1]
|
| 11 |
+
- [0.1, 0.25]
|
| 12 |
+
- [0.25, 0.5]
|
| 13 |
+
- [0.5, 0.75]
|
| 14 |
+
- [0.75, 1.0]
|
| 15 |
+
|
| 16 |
+
lambdas:
|
| 17 |
+
mel/loss: 15.0
|
| 18 |
+
adv/feat_loss: 2.66
|
| 19 |
+
adv/gen_loss: 1.0
|
| 20 |
+
vq/commitment_loss: 0.25
|
| 21 |
+
vq/codebook_loss: 1.0
|
dac-codec/conf/ablations/no-mpd.yml
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
Discriminator.sample_rate: 44100
|
| 6 |
+
Discriminator.rates: [1]
|
| 7 |
+
Discriminator.periods: []
|
| 8 |
+
Discriminator.fft_sizes: [2048, 1024, 512]
|
| 9 |
+
Discriminator.bands:
|
| 10 |
+
- [0.0, 0.1]
|
| 11 |
+
- [0.1, 0.25]
|
| 12 |
+
- [0.25, 0.5]
|
| 13 |
+
- [0.5, 0.75]
|
| 14 |
+
- [0.75, 1.0]
|
| 15 |
+
|
| 16 |
+
lambdas:
|
| 17 |
+
mel/loss: 15.0
|
| 18 |
+
adv/feat_loss: 2.5
|
| 19 |
+
adv/gen_loss: 1.0
|
| 20 |
+
vq/commitment_loss: 0.25
|
| 21 |
+
vq/codebook_loss: 1.0
|
dac-codec/conf/ablations/only-speech.yml
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
train/build_dataset.folders:
|
| 6 |
+
speech_fb:
|
| 7 |
+
- /data/daps/train
|
| 8 |
+
speech_hq:
|
| 9 |
+
- /data/vctk
|
| 10 |
+
- /data/vocalset
|
| 11 |
+
- /data/read_speech
|
| 12 |
+
- /data/french_speech
|
| 13 |
+
speech_uq:
|
| 14 |
+
- /data/emotional_speech/
|
| 15 |
+
- /data/common_voice/
|
| 16 |
+
- /data/german_speech/
|
| 17 |
+
- /data/russian_speech/
|
| 18 |
+
- /data/spanish_speech/
|
| 19 |
+
|
| 20 |
+
val/build_dataset.folders:
|
| 21 |
+
speech_hq:
|
| 22 |
+
- /data/daps/val
|
dac-codec/conf/base.yml
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Model setup
|
| 2 |
+
DAC.sample_rate: 44100
|
| 3 |
+
DAC.encoder_dim: 64
|
| 4 |
+
DAC.encoder_rates: [2, 4, 8, 8]
|
| 5 |
+
DAC.decoder_dim: 1536
|
| 6 |
+
DAC.decoder_rates: [8, 8, 4, 2]
|
| 7 |
+
|
| 8 |
+
# Quantization
|
| 9 |
+
DAC.n_codebooks: 9
|
| 10 |
+
DAC.codebook_size: 1024
|
| 11 |
+
DAC.codebook_dim: 8
|
| 12 |
+
DAC.quantizer_dropout: 1.0
|
| 13 |
+
|
| 14 |
+
# Discriminator
|
| 15 |
+
Discriminator.sample_rate: 44100
|
| 16 |
+
Discriminator.rates: []
|
| 17 |
+
Discriminator.periods: [2, 3, 5, 7, 11]
|
| 18 |
+
Discriminator.fft_sizes: [2048, 1024, 512]
|
| 19 |
+
Discriminator.bands:
|
| 20 |
+
- [0.0, 0.1]
|
| 21 |
+
- [0.1, 0.25]
|
| 22 |
+
- [0.25, 0.5]
|
| 23 |
+
- [0.5, 0.75]
|
| 24 |
+
- [0.75, 1.0]
|
| 25 |
+
|
| 26 |
+
# Optimization
|
| 27 |
+
AdamW.betas: [0.8, 0.99]
|
| 28 |
+
AdamW.lr: 0.0001
|
| 29 |
+
ExponentialLR.gamma: 0.999996
|
| 30 |
+
|
| 31 |
+
amp: false
|
| 32 |
+
val_batch_size: 100
|
| 33 |
+
device: cuda
|
| 34 |
+
num_iters: 250000
|
| 35 |
+
save_iters: [10000, 50000, 100000, 200000]
|
| 36 |
+
valid_freq: 1000
|
| 37 |
+
sample_freq: 10000
|
| 38 |
+
num_workers: 32
|
| 39 |
+
val_idx: [0, 1, 2, 3, 4, 5, 6, 7]
|
| 40 |
+
seed: 0
|
| 41 |
+
lambdas:
|
| 42 |
+
mel/loss: 15.0
|
| 43 |
+
adv/feat_loss: 2.0
|
| 44 |
+
adv/gen_loss: 1.0
|
| 45 |
+
vq/commitment_loss: 0.25
|
| 46 |
+
vq/codebook_loss: 1.0
|
| 47 |
+
|
| 48 |
+
VolumeNorm.db: [const, -16]
|
| 49 |
+
|
| 50 |
+
# Transforms
|
| 51 |
+
build_transform.preprocess:
|
| 52 |
+
- Identity
|
| 53 |
+
build_transform.augment_prob: 0.0
|
| 54 |
+
build_transform.augment:
|
| 55 |
+
- Identity
|
| 56 |
+
build_transform.postprocess:
|
| 57 |
+
- VolumeNorm
|
| 58 |
+
- RescaleAudio
|
| 59 |
+
- ShiftPhase
|
| 60 |
+
|
| 61 |
+
# Loss setup
|
| 62 |
+
MultiScaleSTFTLoss.window_lengths: [2048, 512]
|
| 63 |
+
MelSpectrogramLoss.n_mels: [5, 10, 20, 40, 80, 160, 320]
|
| 64 |
+
MelSpectrogramLoss.window_lengths: [32, 64, 128, 256, 512, 1024, 2048]
|
| 65 |
+
MelSpectrogramLoss.mel_fmin: [0, 0, 0, 0, 0, 0, 0]
|
| 66 |
+
MelSpectrogramLoss.mel_fmax: [null, null, null, null, null, null, null]
|
| 67 |
+
MelSpectrogramLoss.pow: 1.0
|
| 68 |
+
MelSpectrogramLoss.clamp_eps: 1.0e-5
|
| 69 |
+
MelSpectrogramLoss.mag_weight: 0.0
|
| 70 |
+
|
| 71 |
+
# Data
|
| 72 |
+
batch_size: 72
|
| 73 |
+
train/AudioDataset.duration: 0.38
|
| 74 |
+
train/AudioDataset.n_examples: 10000000
|
| 75 |
+
|
| 76 |
+
val/AudioDataset.duration: 5.0
|
| 77 |
+
val/build_transform.augment_prob: 1.0
|
| 78 |
+
val/AudioDataset.n_examples: 250
|
| 79 |
+
|
| 80 |
+
test/AudioDataset.duration: 10.0
|
| 81 |
+
test/build_transform.augment_prob: 1.0
|
| 82 |
+
test/AudioDataset.n_examples: 1000
|
| 83 |
+
|
| 84 |
+
AudioLoader.shuffle: true
|
| 85 |
+
AudioDataset.without_replacement: true
|
| 86 |
+
|
| 87 |
+
train/build_dataset.folders:
|
| 88 |
+
speech_fb:
|
| 89 |
+
- /data/daps/train
|
| 90 |
+
speech_hq:
|
| 91 |
+
- /data/vctk
|
| 92 |
+
- /data/vocalset
|
| 93 |
+
- /data/read_speech
|
| 94 |
+
- /data/french_speech
|
| 95 |
+
speech_uq:
|
| 96 |
+
- /data/emotional_speech/
|
| 97 |
+
- /data/common_voice/
|
| 98 |
+
- /data/german_speech/
|
| 99 |
+
- /data/russian_speech/
|
| 100 |
+
- /data/spanish_speech/
|
| 101 |
+
music_hq:
|
| 102 |
+
- /data/musdb/train
|
| 103 |
+
music_uq:
|
| 104 |
+
- /data/jamendo
|
| 105 |
+
general:
|
| 106 |
+
- /data/audioset/data/unbalanced_train_segments/
|
| 107 |
+
- /data/audioset/data/balanced_train_segments/
|
| 108 |
+
|
| 109 |
+
val/build_dataset.folders:
|
| 110 |
+
speech_hq:
|
| 111 |
+
- /data/daps/val
|
| 112 |
+
music_hq:
|
| 113 |
+
- /data/musdb/test
|
| 114 |
+
general:
|
| 115 |
+
- /data/audioset/data/eval_segments/
|
| 116 |
+
|
| 117 |
+
test/build_dataset.folders:
|
| 118 |
+
speech_hq:
|
| 119 |
+
- /data/daps/test
|
| 120 |
+
music_hq:
|
| 121 |
+
- /data/musdb/test
|
| 122 |
+
general:
|
| 123 |
+
- /data/audioset/data/eval_segments/
|
dac-codec/conf/downsampling/1024x.yml
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
# Model setup
|
| 6 |
+
DAC.sample_rate: 44100
|
| 7 |
+
DAC.encoder_dim: 64
|
| 8 |
+
DAC.encoder_rates: [2, 8, 8, 8]
|
| 9 |
+
DAC.decoder_dim: 1536
|
| 10 |
+
DAC.decoder_rates: [8, 4, 4, 2, 2, 2]
|
| 11 |
+
|
| 12 |
+
# Quantization
|
| 13 |
+
DAC.n_codebooks: 19
|
| 14 |
+
DAC.codebook_size: 1024
|
| 15 |
+
DAC.codebook_dim: 8
|
| 16 |
+
DAC.quantizer_dropout: 1.0
|
dac-codec/conf/downsampling/128x.yml
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
# Model setup
|
| 6 |
+
DAC.sample_rate: 44100
|
| 7 |
+
DAC.encoder_dim: 64
|
| 8 |
+
DAC.encoder_rates: [2, 4, 4, 4]
|
| 9 |
+
DAC.decoder_dim: 1536
|
| 10 |
+
DAC.decoder_rates: [4, 4, 2, 2, 2, 1]
|
| 11 |
+
|
| 12 |
+
# Quantization
|
| 13 |
+
DAC.n_codebooks: 2
|
| 14 |
+
DAC.codebook_size: 1024
|
| 15 |
+
DAC.codebook_dim: 8
|
| 16 |
+
DAC.quantizer_dropout: 1.0
|
dac-codec/conf/downsampling/1536x.yml
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
# Model setup
|
| 6 |
+
DAC.sample_rate: 44100
|
| 7 |
+
DAC.encoder_dim: 96
|
| 8 |
+
DAC.encoder_rates: [2, 8, 8, 12]
|
| 9 |
+
DAC.decoder_dim: 1536
|
| 10 |
+
DAC.decoder_rates: [12, 4, 4, 2, 2, 2]
|
| 11 |
+
|
| 12 |
+
# Quantization
|
| 13 |
+
DAC.n_codebooks: 28
|
| 14 |
+
DAC.codebook_size: 1024
|
| 15 |
+
DAC.codebook_dim: 8
|
| 16 |
+
DAC.quantizer_dropout: 1.0
|
dac-codec/conf/downsampling/768x.yml
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
# Model setup
|
| 6 |
+
DAC.sample_rate: 44100
|
| 7 |
+
DAC.encoder_dim: 64
|
| 8 |
+
DAC.encoder_rates: [2, 6, 8, 8]
|
| 9 |
+
DAC.decoder_dim: 1536
|
| 10 |
+
DAC.decoder_rates: [6, 4, 4, 2, 2, 2]
|
| 11 |
+
|
| 12 |
+
# Quantization
|
| 13 |
+
DAC.n_codebooks: 14
|
| 14 |
+
DAC.codebook_size: 1024
|
| 15 |
+
DAC.codebook_dim: 8
|
| 16 |
+
DAC.quantizer_dropout: 1.0
|
dac-codec/conf/final/16khz.yml
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Model setup
|
| 2 |
+
DAC.sample_rate: 16000
|
| 3 |
+
DAC.encoder_dim: 64
|
| 4 |
+
DAC.encoder_rates: [2, 4, 5, 8]
|
| 5 |
+
DAC.decoder_dim: 1536
|
| 6 |
+
DAC.decoder_rates: [8, 5, 4, 2]
|
| 7 |
+
|
| 8 |
+
# Quantization
|
| 9 |
+
DAC.n_codebooks: 12
|
| 10 |
+
DAC.codebook_size: 1024
|
| 11 |
+
DAC.codebook_dim: 8
|
| 12 |
+
DAC.quantizer_dropout: 0.5
|
| 13 |
+
|
| 14 |
+
# Discriminator
|
| 15 |
+
Discriminator.sample_rate: 16000
|
| 16 |
+
Discriminator.rates: []
|
| 17 |
+
Discriminator.periods: [2, 3, 5, 7, 11]
|
| 18 |
+
Discriminator.fft_sizes: [2048, 1024, 512]
|
| 19 |
+
Discriminator.bands:
|
| 20 |
+
- [0.0, 0.1]
|
| 21 |
+
- [0.1, 0.25]
|
| 22 |
+
- [0.25, 0.5]
|
| 23 |
+
- [0.5, 0.75]
|
| 24 |
+
- [0.75, 1.0]
|
| 25 |
+
|
| 26 |
+
# Optimization
|
| 27 |
+
AdamW.betas: [0.8, 0.99]
|
| 28 |
+
AdamW.lr: 0.0001
|
| 29 |
+
ExponentialLR.gamma: 0.999996
|
| 30 |
+
|
| 31 |
+
amp: false
|
| 32 |
+
val_batch_size: 100
|
| 33 |
+
device: cuda
|
| 34 |
+
num_iters: 400000
|
| 35 |
+
save_iters: [10000, 50000, 100000, 200000]
|
| 36 |
+
valid_freq: 1000
|
| 37 |
+
sample_freq: 10000
|
| 38 |
+
num_workers: 32
|
| 39 |
+
val_idx: [0, 1, 2, 3, 4, 5, 6, 7]
|
| 40 |
+
seed: 0
|
| 41 |
+
lambdas:
|
| 42 |
+
mel/loss: 15.0
|
| 43 |
+
adv/feat_loss: 2.0
|
| 44 |
+
adv/gen_loss: 1.0
|
| 45 |
+
vq/commitment_loss: 0.25
|
| 46 |
+
vq/codebook_loss: 1.0
|
| 47 |
+
|
| 48 |
+
VolumeNorm.db: [const, -16]
|
| 49 |
+
|
| 50 |
+
# Transforms
|
| 51 |
+
build_transform.preprocess:
|
| 52 |
+
- Identity
|
| 53 |
+
build_transform.augment_prob: 0.0
|
| 54 |
+
build_transform.augment:
|
| 55 |
+
- Identity
|
| 56 |
+
build_transform.postprocess:
|
| 57 |
+
- VolumeNorm
|
| 58 |
+
- RescaleAudio
|
| 59 |
+
- ShiftPhase
|
| 60 |
+
|
| 61 |
+
# Loss setup
|
| 62 |
+
MultiScaleSTFTLoss.window_lengths: [2048, 512]
|
| 63 |
+
MelSpectrogramLoss.n_mels: [5, 10, 20, 40, 80, 160, 320]
|
| 64 |
+
MelSpectrogramLoss.window_lengths: [32, 64, 128, 256, 512, 1024, 2048]
|
| 65 |
+
MelSpectrogramLoss.mel_fmin: [0, 0, 0, 0, 0, 0, 0]
|
| 66 |
+
MelSpectrogramLoss.mel_fmax: [null, null, null, null, null, null, null]
|
| 67 |
+
MelSpectrogramLoss.pow: 1.0
|
| 68 |
+
MelSpectrogramLoss.clamp_eps: 1.0e-5
|
| 69 |
+
MelSpectrogramLoss.mag_weight: 0.0
|
| 70 |
+
|
| 71 |
+
# Data
|
| 72 |
+
batch_size: 72
|
| 73 |
+
train/AudioDataset.duration: 0.38
|
| 74 |
+
train/AudioDataset.n_examples: 10000000
|
| 75 |
+
|
| 76 |
+
val/AudioDataset.duration: 5.0
|
| 77 |
+
val/build_transform.augment_prob: 1.0
|
| 78 |
+
val/AudioDataset.n_examples: 250
|
| 79 |
+
|
| 80 |
+
test/AudioDataset.duration: 10.0
|
| 81 |
+
test/build_transform.augment_prob: 1.0
|
| 82 |
+
test/AudioDataset.n_examples: 1000
|
| 83 |
+
|
| 84 |
+
AudioLoader.shuffle: true
|
| 85 |
+
AudioDataset.without_replacement: true
|
| 86 |
+
|
| 87 |
+
train/build_dataset.folders:
|
| 88 |
+
speech_fb:
|
| 89 |
+
- /data/daps/train
|
| 90 |
+
speech_hq:
|
| 91 |
+
- /data/vctk
|
| 92 |
+
- /data/vocalset
|
| 93 |
+
- /data/read_speech
|
| 94 |
+
- /data/french_speech
|
| 95 |
+
speech_uq:
|
| 96 |
+
- /data/emotional_speech/
|
| 97 |
+
- /data/common_voice/
|
| 98 |
+
- /data/german_speech/
|
| 99 |
+
- /data/russian_speech/
|
| 100 |
+
- /data/spanish_speech/
|
| 101 |
+
music_hq:
|
| 102 |
+
- /data/musdb/train
|
| 103 |
+
music_uq:
|
| 104 |
+
- /data/jamendo
|
| 105 |
+
general:
|
| 106 |
+
- /data/audioset/data/unbalanced_train_segments/
|
| 107 |
+
- /data/audioset/data/balanced_train_segments/
|
| 108 |
+
|
| 109 |
+
val/build_dataset.folders:
|
| 110 |
+
speech_hq:
|
| 111 |
+
- /data/daps/val
|
| 112 |
+
music_hq:
|
| 113 |
+
- /data/musdb/test
|
| 114 |
+
general:
|
| 115 |
+
- /data/audioset/data/eval_segments/
|
| 116 |
+
|
| 117 |
+
test/build_dataset.folders:
|
| 118 |
+
speech_hq:
|
| 119 |
+
- /data/daps/test
|
| 120 |
+
music_hq:
|
| 121 |
+
- /data/musdb/test
|
| 122 |
+
general:
|
| 123 |
+
- /data/audioset/data/eval_segments/
|
dac-codec/conf/final/24khz.yml
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Model setup
|
| 2 |
+
DAC.sample_rate: 24000
|
| 3 |
+
DAC.encoder_dim: 64
|
| 4 |
+
DAC.encoder_rates: [2, 4, 5, 8]
|
| 5 |
+
DAC.decoder_dim: 1536
|
| 6 |
+
DAC.decoder_rates: [8, 5, 4, 2]
|
| 7 |
+
|
| 8 |
+
# Quantization
|
| 9 |
+
DAC.n_codebooks: 32
|
| 10 |
+
DAC.codebook_size: 1024
|
| 11 |
+
DAC.codebook_dim: 8
|
| 12 |
+
DAC.quantizer_dropout: 0.5
|
| 13 |
+
|
| 14 |
+
# Discriminator
|
| 15 |
+
Discriminator.sample_rate: 24000
|
| 16 |
+
Discriminator.rates: []
|
| 17 |
+
Discriminator.periods: [2, 3, 5, 7, 11]
|
| 18 |
+
Discriminator.fft_sizes: [2048, 1024, 512]
|
| 19 |
+
Discriminator.bands:
|
| 20 |
+
- [0.0, 0.1]
|
| 21 |
+
- [0.1, 0.25]
|
| 22 |
+
- [0.25, 0.5]
|
| 23 |
+
- [0.5, 0.75]
|
| 24 |
+
- [0.75, 1.0]
|
| 25 |
+
|
| 26 |
+
# Optimization
|
| 27 |
+
AdamW.betas: [0.8, 0.99]
|
| 28 |
+
AdamW.lr: 0.0001
|
| 29 |
+
ExponentialLR.gamma: 0.999996
|
| 30 |
+
|
| 31 |
+
amp: false
|
| 32 |
+
val_batch_size: 100
|
| 33 |
+
device: cuda
|
| 34 |
+
num_iters: 400000
|
| 35 |
+
save_iters: [10000, 50000, 100000, 200000]
|
| 36 |
+
valid_freq: 1000
|
| 37 |
+
sample_freq: 10000
|
| 38 |
+
num_workers: 32
|
| 39 |
+
val_idx: [0, 1, 2, 3, 4, 5, 6, 7]
|
| 40 |
+
seed: 0
|
| 41 |
+
lambdas:
|
| 42 |
+
mel/loss: 15.0
|
| 43 |
+
adv/feat_loss: 2.0
|
| 44 |
+
adv/gen_loss: 1.0
|
| 45 |
+
vq/commitment_loss: 0.25
|
| 46 |
+
vq/codebook_loss: 1.0
|
| 47 |
+
|
| 48 |
+
VolumeNorm.db: [const, -16]
|
| 49 |
+
|
| 50 |
+
# Transforms
|
| 51 |
+
build_transform.preprocess:
|
| 52 |
+
- Identity
|
| 53 |
+
build_transform.augment_prob: 0.0
|
| 54 |
+
build_transform.augment:
|
| 55 |
+
- Identity
|
| 56 |
+
build_transform.postprocess:
|
| 57 |
+
- VolumeNorm
|
| 58 |
+
- RescaleAudio
|
| 59 |
+
- ShiftPhase
|
| 60 |
+
|
| 61 |
+
# Loss setup
|
| 62 |
+
MultiScaleSTFTLoss.window_lengths: [2048, 512]
|
| 63 |
+
MelSpectrogramLoss.n_mels: [5, 10, 20, 40, 80, 160, 320]
|
| 64 |
+
MelSpectrogramLoss.window_lengths: [32, 64, 128, 256, 512, 1024, 2048]
|
| 65 |
+
MelSpectrogramLoss.mel_fmin: [0, 0, 0, 0, 0, 0, 0]
|
| 66 |
+
MelSpectrogramLoss.mel_fmax: [null, null, null, null, null, null, null]
|
| 67 |
+
MelSpectrogramLoss.pow: 1.0
|
| 68 |
+
MelSpectrogramLoss.clamp_eps: 1.0e-5
|
| 69 |
+
MelSpectrogramLoss.mag_weight: 0.0
|
| 70 |
+
|
| 71 |
+
# Data
|
| 72 |
+
batch_size: 72
|
| 73 |
+
train/AudioDataset.duration: 0.38
|
| 74 |
+
train/AudioDataset.n_examples: 10000000
|
| 75 |
+
|
| 76 |
+
val/AudioDataset.duration: 5.0
|
| 77 |
+
val/build_transform.augment_prob: 1.0
|
| 78 |
+
val/AudioDataset.n_examples: 250
|
| 79 |
+
|
| 80 |
+
test/AudioDataset.duration: 10.0
|
| 81 |
+
test/build_transform.augment_prob: 1.0
|
| 82 |
+
test/AudioDataset.n_examples: 1000
|
| 83 |
+
|
| 84 |
+
AudioLoader.shuffle: true
|
| 85 |
+
AudioDataset.without_replacement: true
|
| 86 |
+
|
| 87 |
+
train/build_dataset.folders:
|
| 88 |
+
speech_fb:
|
| 89 |
+
- /data/daps/train
|
| 90 |
+
speech_hq:
|
| 91 |
+
- /data/vctk
|
| 92 |
+
- /data/vocalset
|
| 93 |
+
- /data/read_speech
|
| 94 |
+
- /data/french_speech
|
| 95 |
+
speech_uq:
|
| 96 |
+
- /data/emotional_speech/
|
| 97 |
+
- /data/common_voice/
|
| 98 |
+
- /data/german_speech/
|
| 99 |
+
- /data/russian_speech/
|
| 100 |
+
- /data/spanish_speech/
|
| 101 |
+
music_hq:
|
| 102 |
+
- /data/musdb/train
|
| 103 |
+
music_uq:
|
| 104 |
+
- /data/jamendo
|
| 105 |
+
general:
|
| 106 |
+
- /data/audioset/data/unbalanced_train_segments/
|
| 107 |
+
- /data/audioset/data/balanced_train_segments/
|
| 108 |
+
|
| 109 |
+
val/build_dataset.folders:
|
| 110 |
+
speech_hq:
|
| 111 |
+
- /data/daps/val
|
| 112 |
+
music_hq:
|
| 113 |
+
- /data/musdb/test
|
| 114 |
+
general:
|
| 115 |
+
- /data/audioset/data/eval_segments/
|
| 116 |
+
|
| 117 |
+
test/build_dataset.folders:
|
| 118 |
+
speech_hq:
|
| 119 |
+
- /data/daps/test
|
| 120 |
+
music_hq:
|
| 121 |
+
- /data/musdb/test
|
| 122 |
+
general:
|
| 123 |
+
- /data/audioset/data/eval_segments/
|
dac-codec/conf/final/44khz-16kbps.yml
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Model setup
|
| 2 |
+
DAC.sample_rate: 44100
|
| 3 |
+
DAC.encoder_dim: 64
|
| 4 |
+
DAC.encoder_rates: [2, 4, 8, 8]
|
| 5 |
+
DAC.latent_dim: 128
|
| 6 |
+
DAC.decoder_dim: 1536
|
| 7 |
+
DAC.decoder_rates: [8, 8, 4, 2]
|
| 8 |
+
|
| 9 |
+
# Quantization
|
| 10 |
+
DAC.n_codebooks: 18 # Max bitrate of 16kbps
|
| 11 |
+
DAC.codebook_size: 1024
|
| 12 |
+
DAC.codebook_dim: 8
|
| 13 |
+
DAC.quantizer_dropout: 0.5
|
| 14 |
+
|
| 15 |
+
# Discriminator
|
| 16 |
+
Discriminator.sample_rate: 44100
|
| 17 |
+
Discriminator.rates: []
|
| 18 |
+
Discriminator.periods: [2, 3, 5, 7, 11]
|
| 19 |
+
Discriminator.fft_sizes: [2048, 1024, 512]
|
| 20 |
+
Discriminator.bands:
|
| 21 |
+
- [0.0, 0.1]
|
| 22 |
+
- [0.1, 0.25]
|
| 23 |
+
- [0.25, 0.5]
|
| 24 |
+
- [0.5, 0.75]
|
| 25 |
+
- [0.75, 1.0]
|
| 26 |
+
|
| 27 |
+
# Optimization
|
| 28 |
+
AdamW.betas: [0.8, 0.99]
|
| 29 |
+
AdamW.lr: 0.0001
|
| 30 |
+
ExponentialLR.gamma: 0.999996
|
| 31 |
+
|
| 32 |
+
amp: false
|
| 33 |
+
val_batch_size: 100
|
| 34 |
+
device: cuda
|
| 35 |
+
num_iters: 400000
|
| 36 |
+
save_iters: [10000, 50000, 100000, 200000]
|
| 37 |
+
valid_freq: 1000
|
| 38 |
+
sample_freq: 10000
|
| 39 |
+
num_workers: 32
|
| 40 |
+
val_idx: [0, 1, 2, 3, 4, 5, 6, 7]
|
| 41 |
+
seed: 0
|
| 42 |
+
lambdas:
|
| 43 |
+
mel/loss: 15.0
|
| 44 |
+
adv/feat_loss: 2.0
|
| 45 |
+
adv/gen_loss: 1.0
|
| 46 |
+
vq/commitment_loss: 0.25
|
| 47 |
+
vq/codebook_loss: 1.0
|
| 48 |
+
|
| 49 |
+
VolumeNorm.db: [const, -16]
|
| 50 |
+
|
| 51 |
+
# Transforms
|
| 52 |
+
build_transform.preprocess:
|
| 53 |
+
- Identity
|
| 54 |
+
build_transform.augment_prob: 0.0
|
| 55 |
+
build_transform.augment:
|
| 56 |
+
- Identity
|
| 57 |
+
build_transform.postprocess:
|
| 58 |
+
- VolumeNorm
|
| 59 |
+
- RescaleAudio
|
| 60 |
+
- ShiftPhase
|
| 61 |
+
|
| 62 |
+
# Loss setup
|
| 63 |
+
MultiScaleSTFTLoss.window_lengths: [2048, 512]
|
| 64 |
+
MelSpectrogramLoss.n_mels: [5, 10, 20, 40, 80, 160, 320]
|
| 65 |
+
MelSpectrogramLoss.window_lengths: [32, 64, 128, 256, 512, 1024, 2048]
|
| 66 |
+
MelSpectrogramLoss.mel_fmin: [0, 0, 0, 0, 0, 0, 0]
|
| 67 |
+
MelSpectrogramLoss.mel_fmax: [null, null, null, null, null, null, null]
|
| 68 |
+
MelSpectrogramLoss.pow: 1.0
|
| 69 |
+
MelSpectrogramLoss.clamp_eps: 1.0e-5
|
| 70 |
+
MelSpectrogramLoss.mag_weight: 0.0
|
| 71 |
+
|
| 72 |
+
# Data
|
| 73 |
+
batch_size: 72
|
| 74 |
+
train/AudioDataset.duration: 0.38
|
| 75 |
+
train/AudioDataset.n_examples: 10000000
|
| 76 |
+
|
| 77 |
+
val/AudioDataset.duration: 5.0
|
| 78 |
+
val/build_transform.augment_prob: 1.0
|
| 79 |
+
val/AudioDataset.n_examples: 250
|
| 80 |
+
|
| 81 |
+
test/AudioDataset.duration: 10.0
|
| 82 |
+
test/build_transform.augment_prob: 1.0
|
| 83 |
+
test/AudioDataset.n_examples: 1000
|
| 84 |
+
|
| 85 |
+
AudioLoader.shuffle: true
|
| 86 |
+
AudioDataset.without_replacement: true
|
| 87 |
+
|
| 88 |
+
train/build_dataset.folders:
|
| 89 |
+
speech_fb:
|
| 90 |
+
- /data/daps/train
|
| 91 |
+
speech_hq:
|
| 92 |
+
- /data/vctk
|
| 93 |
+
- /data/vocalset
|
| 94 |
+
- /data/read_speech
|
| 95 |
+
- /data/french_speech
|
| 96 |
+
speech_uq:
|
| 97 |
+
- /data/emotional_speech/
|
| 98 |
+
- /data/common_voice/
|
| 99 |
+
- /data/german_speech/
|
| 100 |
+
- /data/russian_speech/
|
| 101 |
+
- /data/spanish_speech/
|
| 102 |
+
music_hq:
|
| 103 |
+
- /data/musdb/train
|
| 104 |
+
music_uq:
|
| 105 |
+
- /data/jamendo
|
| 106 |
+
general:
|
| 107 |
+
- /data/audioset/data/unbalanced_train_segments/
|
| 108 |
+
- /data/audioset/data/balanced_train_segments/
|
| 109 |
+
|
| 110 |
+
val/build_dataset.folders:
|
| 111 |
+
speech_hq:
|
| 112 |
+
- /data/daps/val
|
| 113 |
+
music_hq:
|
| 114 |
+
- /data/musdb/test
|
| 115 |
+
general:
|
| 116 |
+
- /data/audioset/data/eval_segments/
|
| 117 |
+
|
| 118 |
+
test/build_dataset.folders:
|
| 119 |
+
speech_hq:
|
| 120 |
+
- /data/daps/test
|
| 121 |
+
music_hq:
|
| 122 |
+
- /data/musdb/test
|
| 123 |
+
general:
|
| 124 |
+
- /data/audioset/data/eval_segments/
|
dac-codec/conf/final/44khz.yml
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Model setup
|
| 2 |
+
DAC.sample_rate: 44100
|
| 3 |
+
DAC.encoder_dim: 64
|
| 4 |
+
DAC.encoder_rates: [2, 4, 8, 8]
|
| 5 |
+
DAC.decoder_dim: 1536
|
| 6 |
+
DAC.decoder_rates: [8, 8, 4, 2]
|
| 7 |
+
|
| 8 |
+
# Quantization
|
| 9 |
+
DAC.n_codebooks: 9
|
| 10 |
+
DAC.codebook_size: 1024
|
| 11 |
+
DAC.codebook_dim: 8
|
| 12 |
+
DAC.quantizer_dropout: 0.5
|
| 13 |
+
|
| 14 |
+
# Discriminator
|
| 15 |
+
Discriminator.sample_rate: 44100
|
| 16 |
+
Discriminator.rates: []
|
| 17 |
+
Discriminator.periods: [2, 3, 5, 7, 11]
|
| 18 |
+
Discriminator.fft_sizes: [2048, 1024, 512]
|
| 19 |
+
Discriminator.bands:
|
| 20 |
+
- [0.0, 0.1]
|
| 21 |
+
- [0.1, 0.25]
|
| 22 |
+
- [0.25, 0.5]
|
| 23 |
+
- [0.5, 0.75]
|
| 24 |
+
- [0.75, 1.0]
|
| 25 |
+
|
| 26 |
+
# Optimization
|
| 27 |
+
AdamW.betas: [0.8, 0.99]
|
| 28 |
+
AdamW.lr: 0.0001
|
| 29 |
+
ExponentialLR.gamma: 0.999996
|
| 30 |
+
|
| 31 |
+
amp: false
|
| 32 |
+
val_batch_size: 100
|
| 33 |
+
device: cuda
|
| 34 |
+
num_iters: 400000
|
| 35 |
+
save_iters: [10000, 50000, 100000, 200000]
|
| 36 |
+
valid_freq: 1000
|
| 37 |
+
sample_freq: 10000
|
| 38 |
+
num_workers: 32
|
| 39 |
+
val_idx: [0, 1, 2, 3, 4, 5, 6, 7]
|
| 40 |
+
seed: 0
|
| 41 |
+
lambdas:
|
| 42 |
+
mel/loss: 15.0
|
| 43 |
+
adv/feat_loss: 2.0
|
| 44 |
+
adv/gen_loss: 1.0
|
| 45 |
+
vq/commitment_loss: 0.25
|
| 46 |
+
vq/codebook_loss: 1.0
|
| 47 |
+
|
| 48 |
+
VolumeNorm.db: [const, -16]
|
| 49 |
+
|
| 50 |
+
# Transforms
|
| 51 |
+
build_transform.preprocess:
|
| 52 |
+
- Identity
|
| 53 |
+
build_transform.augment_prob: 0.0
|
| 54 |
+
build_transform.augment:
|
| 55 |
+
- Identity
|
| 56 |
+
build_transform.postprocess:
|
| 57 |
+
- VolumeNorm
|
| 58 |
+
- RescaleAudio
|
| 59 |
+
- ShiftPhase
|
| 60 |
+
|
| 61 |
+
# Loss setup
|
| 62 |
+
MultiScaleSTFTLoss.window_lengths: [2048, 512]
|
| 63 |
+
MelSpectrogramLoss.n_mels: [5, 10, 20, 40, 80, 160, 320]
|
| 64 |
+
MelSpectrogramLoss.window_lengths: [32, 64, 128, 256, 512, 1024, 2048]
|
| 65 |
+
MelSpectrogramLoss.mel_fmin: [0, 0, 0, 0, 0, 0, 0]
|
| 66 |
+
MelSpectrogramLoss.mel_fmax: [null, null, null, null, null, null, null]
|
| 67 |
+
MelSpectrogramLoss.pow: 1.0
|
| 68 |
+
MelSpectrogramLoss.clamp_eps: 1.0e-5
|
| 69 |
+
MelSpectrogramLoss.mag_weight: 0.0
|
| 70 |
+
|
| 71 |
+
# Data
|
| 72 |
+
batch_size: 72
|
| 73 |
+
train/AudioDataset.duration: 0.38
|
| 74 |
+
train/AudioDataset.n_examples: 10000000
|
| 75 |
+
|
| 76 |
+
val/AudioDataset.duration: 5.0
|
| 77 |
+
val/build_transform.augment_prob: 1.0
|
| 78 |
+
val/AudioDataset.n_examples: 250
|
| 79 |
+
|
| 80 |
+
test/AudioDataset.duration: 10.0
|
| 81 |
+
test/build_transform.augment_prob: 1.0
|
| 82 |
+
test/AudioDataset.n_examples: 1000
|
| 83 |
+
|
| 84 |
+
AudioLoader.shuffle: true
|
| 85 |
+
AudioDataset.without_replacement: true
|
| 86 |
+
|
| 87 |
+
train/build_dataset.folders:
|
| 88 |
+
speech_fb:
|
| 89 |
+
- /data/daps/train
|
| 90 |
+
speech_hq:
|
| 91 |
+
- /data/vctk
|
| 92 |
+
- /data/vocalset
|
| 93 |
+
- /data/read_speech
|
| 94 |
+
- /data/french_speech
|
| 95 |
+
speech_uq:
|
| 96 |
+
- /data/emotional_speech/
|
| 97 |
+
- /data/common_voice/
|
| 98 |
+
- /data/german_speech/
|
| 99 |
+
- /data/russian_speech/
|
| 100 |
+
- /data/spanish_speech/
|
| 101 |
+
music_hq:
|
| 102 |
+
- /data/musdb/train
|
| 103 |
+
music_uq:
|
| 104 |
+
- /data/jamendo
|
| 105 |
+
general:
|
| 106 |
+
- /data/audioset/data/unbalanced_train_segments/
|
| 107 |
+
- /data/audioset/data/balanced_train_segments/
|
| 108 |
+
|
| 109 |
+
val/build_dataset.folders:
|
| 110 |
+
speech_hq:
|
| 111 |
+
- /data/daps/val
|
| 112 |
+
music_hq:
|
| 113 |
+
- /data/musdb/test
|
| 114 |
+
general:
|
| 115 |
+
- /data/audioset/data/eval_segments/
|
| 116 |
+
|
| 117 |
+
test/build_dataset.folders:
|
| 118 |
+
speech_hq:
|
| 119 |
+
- /data/daps/test
|
| 120 |
+
music_hq:
|
| 121 |
+
- /data/musdb/test
|
| 122 |
+
general:
|
| 123 |
+
- /data/audioset/data/eval_segments/
|
dac-codec/conf/quantizer/24kbps.yml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
DAC.n_codebooks: 28
|
dac-codec/conf/quantizer/256d.yml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
DAC.codebook_dim: 256
|
dac-codec/conf/quantizer/2d.yml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
DAC.codebook_dim: 2
|
dac-codec/conf/quantizer/32d.yml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
DAC.codebook_dim: 32
|
dac-codec/conf/quantizer/4d.yml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
DAC.codebook_dim: 4
|
dac-codec/conf/quantizer/512d.yml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
DAC.codebook_dim: 512
|
dac-codec/conf/quantizer/dropout-0.0.yml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
DAC.quantizer_dropout: 0.0
|
dac-codec/conf/quantizer/dropout-0.25.yml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
DAC.quantizer_dropout: 0.25
|
dac-codec/conf/quantizer/dropout-0.5.yml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
DAC.quantizer_dropout: 0.5
|
dac-codec/conf/size/medium.yml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
DAC.decoder_dim: 1024
|
dac-codec/conf/size/small.yml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/base.yml
|
| 3 |
+
- conf/1gpu.yml
|
| 4 |
+
|
| 5 |
+
DAC.decoder_dim: 512
|
dac-codec/dac/__init__.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__version__ = "1.0.0"
|
| 2 |
+
|
| 3 |
+
# preserved here for legacy reasons
|
| 4 |
+
__model_version__ = "latest"
|
| 5 |
+
|
| 6 |
+
import audiotools
|
| 7 |
+
|
| 8 |
+
audiotools.ml.BaseModel.INTERN += ["dac.**"]
|
| 9 |
+
audiotools.ml.BaseModel.EXTERN += ["einops"]
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
from . import nn
|
| 13 |
+
from . import model
|
| 14 |
+
from . import utils
|
| 15 |
+
from .model import DAC
|
| 16 |
+
from .model import DACFile
|
dac-codec/dac/__main__.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
|
| 3 |
+
import argbind
|
| 4 |
+
|
| 5 |
+
from dac.utils import download
|
| 6 |
+
from dac.utils.decode import decode
|
| 7 |
+
from dac.utils.encode import encode
|
| 8 |
+
|
| 9 |
+
STAGES = ["encode", "decode", "download"]
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def run(stage: str):
|
| 13 |
+
"""Run stages.
|
| 14 |
+
|
| 15 |
+
Parameters
|
| 16 |
+
----------
|
| 17 |
+
stage : str
|
| 18 |
+
Stage to run
|
| 19 |
+
"""
|
| 20 |
+
if stage not in STAGES:
|
| 21 |
+
raise ValueError(f"Unknown command: {stage}. Allowed commands are {STAGES}")
|
| 22 |
+
stage_fn = globals()[stage]
|
| 23 |
+
|
| 24 |
+
if stage == "download":
|
| 25 |
+
stage_fn()
|
| 26 |
+
return
|
| 27 |
+
|
| 28 |
+
stage_fn()
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
if __name__ == "__main__":
|
| 32 |
+
group = sys.argv.pop(1)
|
| 33 |
+
args = argbind.parse_args(group=group)
|
| 34 |
+
|
| 35 |
+
with argbind.scope(args):
|
| 36 |
+
run(group)
|
dac-codec/dac/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (473 Bytes). View file
|
|
|
dac-codec/dac/__pycache__/__main__.cpython-310.pyc
ADDED
|
Binary file (899 Bytes). View file
|
|
|
dac-codec/dac/compare/__init__.py
ADDED
|
File without changes
|
dac-codec/dac/compare/encodec.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from audiotools import AudioSignal
|
| 3 |
+
from audiotools.ml import BaseModel
|
| 4 |
+
from encodec import EncodecModel
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class Encodec(BaseModel):
|
| 8 |
+
def __init__(self, sample_rate: int = 24000, bandwidth: float = 24.0):
|
| 9 |
+
super().__init__()
|
| 10 |
+
|
| 11 |
+
if sample_rate == 24000:
|
| 12 |
+
self.model = EncodecModel.encodec_model_24khz()
|
| 13 |
+
else:
|
| 14 |
+
self.model = EncodecModel.encodec_model_48khz()
|
| 15 |
+
self.model.set_target_bandwidth(bandwidth)
|
| 16 |
+
self.sample_rate = 44100
|
| 17 |
+
|
| 18 |
+
def forward(
|
| 19 |
+
self,
|
| 20 |
+
audio_data: torch.Tensor,
|
| 21 |
+
sample_rate: int = 44100,
|
| 22 |
+
n_quantizers: int = None,
|
| 23 |
+
):
|
| 24 |
+
signal = AudioSignal(audio_data, sample_rate)
|
| 25 |
+
signal.resample(self.model.sample_rate)
|
| 26 |
+
recons = self.model(signal.audio_data)
|
| 27 |
+
recons = AudioSignal(recons, self.model.sample_rate)
|
| 28 |
+
recons.resample(sample_rate)
|
| 29 |
+
return {"audio": recons.audio_data}
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
if __name__ == "__main__":
|
| 33 |
+
import numpy as np
|
| 34 |
+
from functools import partial
|
| 35 |
+
|
| 36 |
+
model = Encodec()
|
| 37 |
+
|
| 38 |
+
for n, m in model.named_modules():
|
| 39 |
+
o = m.extra_repr()
|
| 40 |
+
p = sum([np.prod(p.size()) for p in m.parameters()])
|
| 41 |
+
fn = lambda o, p: o + f" {p/1e6:<.3f}M params."
|
| 42 |
+
setattr(m, "extra_repr", partial(fn, o=o, p=p))
|
| 43 |
+
print(model)
|
| 44 |
+
print("Total # of params: ", sum([np.prod(p.size()) for p in model.parameters()]))
|
| 45 |
+
|
| 46 |
+
length = 88200 * 2
|
| 47 |
+
x = torch.randn(1, 1, length).to(model.device)
|
| 48 |
+
x.requires_grad_(True)
|
| 49 |
+
x.retain_grad()
|
| 50 |
+
|
| 51 |
+
# Make a forward pass
|
| 52 |
+
out = model(x)["audio"]
|
| 53 |
+
|
| 54 |
+
print(x.shape, out.shape)
|
dac-codec/dac/model/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .base import CodecMixin
|
| 2 |
+
from .base import DACFile
|
| 3 |
+
from .dac import DAC
|
| 4 |
+
from .discriminator import Discriminator
|
dac-codec/dac/model/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (314 Bytes). View file
|
|
|
dac-codec/dac/model/__pycache__/base.cpython-310.pyc
ADDED
|
Binary file (7.22 kB). View file
|
|
|
dac-codec/dac/model/__pycache__/dac.cpython-310.pyc
ADDED
|
Binary file (10.6 kB). View file
|
|
|
dac-codec/dac/model/__pycache__/discriminator.cpython-310.pyc
ADDED
|
Binary file (8.02 kB). View file
|
|
|
dac-codec/dac/model/base.py
ADDED
|
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Union
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
import tqdm
|
| 9 |
+
from audiotools import AudioSignal
|
| 10 |
+
from torch import nn
|
| 11 |
+
|
| 12 |
+
SUPPORTED_VERSIONS = ["1.0.0"]
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@dataclass
|
| 16 |
+
class DACFile:
|
| 17 |
+
codes: torch.Tensor
|
| 18 |
+
|
| 19 |
+
# Metadata
|
| 20 |
+
chunk_length: int
|
| 21 |
+
original_length: int
|
| 22 |
+
input_db: float
|
| 23 |
+
channels: int
|
| 24 |
+
sample_rate: int
|
| 25 |
+
padding: bool
|
| 26 |
+
dac_version: str
|
| 27 |
+
|
| 28 |
+
def save(self, path):
|
| 29 |
+
artifacts = {
|
| 30 |
+
"codes": self.codes.numpy().astype(np.uint16),
|
| 31 |
+
"metadata": {
|
| 32 |
+
"input_db": self.input_db.numpy().astype(np.float32),
|
| 33 |
+
"original_length": self.original_length,
|
| 34 |
+
"sample_rate": self.sample_rate,
|
| 35 |
+
"chunk_length": self.chunk_length,
|
| 36 |
+
"channels": self.channels,
|
| 37 |
+
"padding": self.padding,
|
| 38 |
+
"dac_version": SUPPORTED_VERSIONS[-1],
|
| 39 |
+
},
|
| 40 |
+
}
|
| 41 |
+
path = Path(path).with_suffix(".dac")
|
| 42 |
+
with open(path, "wb") as f:
|
| 43 |
+
np.save(f, artifacts)
|
| 44 |
+
return path
|
| 45 |
+
|
| 46 |
+
@classmethod
|
| 47 |
+
def load(cls, path):
|
| 48 |
+
artifacts = np.load(path, allow_pickle=True)[()]
|
| 49 |
+
codes = torch.from_numpy(artifacts["codes"].astype(int))
|
| 50 |
+
if artifacts["metadata"].get("dac_version", None) not in SUPPORTED_VERSIONS:
|
| 51 |
+
raise RuntimeError(
|
| 52 |
+
f"Given file {path} can't be loaded with this version of descript-audio-codec."
|
| 53 |
+
)
|
| 54 |
+
return cls(codes=codes, **artifacts["metadata"])
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class CodecMixin:
|
| 58 |
+
@property
|
| 59 |
+
def padding(self):
|
| 60 |
+
if not hasattr(self, "_padding"):
|
| 61 |
+
self._padding = True
|
| 62 |
+
return self._padding
|
| 63 |
+
|
| 64 |
+
@padding.setter
|
| 65 |
+
def padding(self, value):
|
| 66 |
+
assert isinstance(value, bool)
|
| 67 |
+
|
| 68 |
+
layers = [
|
| 69 |
+
l for l in self.modules() if isinstance(l, (nn.Conv1d, nn.ConvTranspose1d))
|
| 70 |
+
]
|
| 71 |
+
|
| 72 |
+
for layer in layers:
|
| 73 |
+
if value:
|
| 74 |
+
if hasattr(layer, "original_padding"):
|
| 75 |
+
layer.padding = layer.original_padding
|
| 76 |
+
else:
|
| 77 |
+
layer.original_padding = layer.padding
|
| 78 |
+
layer.padding = tuple(0 for _ in range(len(layer.padding)))
|
| 79 |
+
|
| 80 |
+
self._padding = value
|
| 81 |
+
|
| 82 |
+
def get_delay(self):
|
| 83 |
+
# Any number works here, delay is invariant to input length
|
| 84 |
+
l_out = self.get_output_length(0)
|
| 85 |
+
L = l_out
|
| 86 |
+
|
| 87 |
+
layers = []
|
| 88 |
+
for layer in self.modules():
|
| 89 |
+
if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
|
| 90 |
+
layers.append(layer)
|
| 91 |
+
|
| 92 |
+
for layer in reversed(layers):
|
| 93 |
+
d = layer.dilation[0]
|
| 94 |
+
k = layer.kernel_size[0]
|
| 95 |
+
s = layer.stride[0]
|
| 96 |
+
|
| 97 |
+
if isinstance(layer, nn.ConvTranspose1d):
|
| 98 |
+
L = ((L - d * (k - 1) - 1) / s) + 1
|
| 99 |
+
elif isinstance(layer, nn.Conv1d):
|
| 100 |
+
L = (L - 1) * s + d * (k - 1) + 1
|
| 101 |
+
|
| 102 |
+
L = math.ceil(L)
|
| 103 |
+
|
| 104 |
+
l_in = L
|
| 105 |
+
|
| 106 |
+
return (l_in - l_out) // 2
|
| 107 |
+
|
| 108 |
+
def get_output_length(self, input_length):
|
| 109 |
+
L = input_length
|
| 110 |
+
# Calculate output length
|
| 111 |
+
for layer in self.modules():
|
| 112 |
+
if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
|
| 113 |
+
d = layer.dilation[0]
|
| 114 |
+
k = layer.kernel_size[0]
|
| 115 |
+
s = layer.stride[0]
|
| 116 |
+
|
| 117 |
+
if isinstance(layer, nn.Conv1d):
|
| 118 |
+
L = ((L - d * (k - 1) - 1) / s) + 1
|
| 119 |
+
elif isinstance(layer, nn.ConvTranspose1d):
|
| 120 |
+
L = (L - 1) * s + d * (k - 1) + 1
|
| 121 |
+
|
| 122 |
+
L = math.floor(L)
|
| 123 |
+
return L
|
| 124 |
+
|
| 125 |
+
@torch.no_grad()
|
| 126 |
+
def compress(
|
| 127 |
+
self,
|
| 128 |
+
audio_path_or_signal: Union[str, Path, AudioSignal],
|
| 129 |
+
win_duration: float = 1.0,
|
| 130 |
+
verbose: bool = False,
|
| 131 |
+
normalize_db: float = -16,
|
| 132 |
+
n_quantizers: int = None,
|
| 133 |
+
) -> DACFile:
|
| 134 |
+
"""Processes an audio signal from a file or AudioSignal object into
|
| 135 |
+
discrete codes. This function processes the signal in short windows,
|
| 136 |
+
using constant GPU memory.
|
| 137 |
+
|
| 138 |
+
Parameters
|
| 139 |
+
----------
|
| 140 |
+
audio_path_or_signal : Union[str, Path, AudioSignal]
|
| 141 |
+
audio signal to reconstruct
|
| 142 |
+
win_duration : float, optional
|
| 143 |
+
window duration in seconds, by default 5.0
|
| 144 |
+
verbose : bool, optional
|
| 145 |
+
by default False
|
| 146 |
+
normalize_db : float, optional
|
| 147 |
+
normalize db, by default -16
|
| 148 |
+
|
| 149 |
+
Returns
|
| 150 |
+
-------
|
| 151 |
+
DACFile
|
| 152 |
+
Object containing compressed codes and metadata
|
| 153 |
+
required for decompression
|
| 154 |
+
"""
|
| 155 |
+
audio_signal = audio_path_or_signal
|
| 156 |
+
if isinstance(audio_signal, (str, Path)):
|
| 157 |
+
audio_signal = AudioSignal.load_from_file_with_ffmpeg(str(audio_signal))
|
| 158 |
+
|
| 159 |
+
self.eval()
|
| 160 |
+
original_padding = self.padding
|
| 161 |
+
original_device = audio_signal.device
|
| 162 |
+
|
| 163 |
+
audio_signal = audio_signal.clone()
|
| 164 |
+
original_sr = audio_signal.sample_rate
|
| 165 |
+
|
| 166 |
+
resample_fn = audio_signal.resample
|
| 167 |
+
loudness_fn = audio_signal.loudness
|
| 168 |
+
|
| 169 |
+
# If audio is > 10 minutes long, use the ffmpeg versions
|
| 170 |
+
if audio_signal.signal_duration >= 10 * 60 * 60:
|
| 171 |
+
resample_fn = audio_signal.ffmpeg_resample
|
| 172 |
+
loudness_fn = audio_signal.ffmpeg_loudness
|
| 173 |
+
|
| 174 |
+
original_length = audio_signal.signal_length
|
| 175 |
+
resample_fn(self.sample_rate)
|
| 176 |
+
input_db = loudness_fn()
|
| 177 |
+
|
| 178 |
+
if normalize_db is not None:
|
| 179 |
+
audio_signal.normalize(normalize_db)
|
| 180 |
+
audio_signal.ensure_max_of_audio()
|
| 181 |
+
|
| 182 |
+
nb, nac, nt = audio_signal.audio_data.shape
|
| 183 |
+
audio_signal.audio_data = audio_signal.audio_data.reshape(nb * nac, 1, nt)
|
| 184 |
+
win_duration = (
|
| 185 |
+
audio_signal.signal_duration if win_duration is None else win_duration
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
if audio_signal.signal_duration <= win_duration:
|
| 189 |
+
# Unchunked compression (used if signal length < win duration)
|
| 190 |
+
self.padding = True
|
| 191 |
+
n_samples = nt
|
| 192 |
+
hop = nt
|
| 193 |
+
else:
|
| 194 |
+
# Chunked inference
|
| 195 |
+
self.padding = False
|
| 196 |
+
# Zero-pad signal on either side by the delay
|
| 197 |
+
audio_signal.zero_pad(self.delay, self.delay)
|
| 198 |
+
n_samples = int(win_duration * self.sample_rate)
|
| 199 |
+
# Round n_samples to nearest hop length multiple
|
| 200 |
+
n_samples = int(math.ceil(n_samples / self.hop_length) * self.hop_length)
|
| 201 |
+
hop = self.get_output_length(n_samples)
|
| 202 |
+
|
| 203 |
+
codes = []
|
| 204 |
+
range_fn = range if not verbose else tqdm.trange
|
| 205 |
+
|
| 206 |
+
for i in range_fn(0, nt, hop):
|
| 207 |
+
x = audio_signal[..., i : i + n_samples]
|
| 208 |
+
x = x.zero_pad(0, max(0, n_samples - x.shape[-1]))
|
| 209 |
+
|
| 210 |
+
audio_data = x.audio_data.to(self.device)
|
| 211 |
+
audio_data = self.preprocess(audio_data, self.sample_rate)
|
| 212 |
+
_, c, _, _, _ = self.encode(audio_data, n_quantizers)
|
| 213 |
+
codes.append(c.to(original_device))
|
| 214 |
+
chunk_length = c.shape[-1]
|
| 215 |
+
|
| 216 |
+
codes = torch.cat(codes, dim=-1)
|
| 217 |
+
|
| 218 |
+
dac_file = DACFile(
|
| 219 |
+
codes=codes,
|
| 220 |
+
chunk_length=chunk_length,
|
| 221 |
+
original_length=original_length,
|
| 222 |
+
input_db=input_db,
|
| 223 |
+
channels=nac,
|
| 224 |
+
sample_rate=original_sr,
|
| 225 |
+
padding=self.padding,
|
| 226 |
+
dac_version=SUPPORTED_VERSIONS[-1],
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
if n_quantizers is not None:
|
| 230 |
+
codes = codes[:, :n_quantizers, :]
|
| 231 |
+
|
| 232 |
+
self.padding = original_padding
|
| 233 |
+
return dac_file
|
| 234 |
+
|
| 235 |
+
@torch.no_grad()
|
| 236 |
+
def decompress(
|
| 237 |
+
self,
|
| 238 |
+
obj: Union[str, Path, DACFile],
|
| 239 |
+
verbose: bool = False,
|
| 240 |
+
) -> AudioSignal:
|
| 241 |
+
"""Reconstruct audio from a given .dac file
|
| 242 |
+
|
| 243 |
+
Parameters
|
| 244 |
+
----------
|
| 245 |
+
obj : Union[str, Path, DACFile]
|
| 246 |
+
.dac file location or corresponding DACFile object.
|
| 247 |
+
verbose : bool, optional
|
| 248 |
+
Prints progress if True, by default False
|
| 249 |
+
|
| 250 |
+
Returns
|
| 251 |
+
-------
|
| 252 |
+
AudioSignal
|
| 253 |
+
Object with the reconstructed audio
|
| 254 |
+
"""
|
| 255 |
+
self.eval()
|
| 256 |
+
if isinstance(obj, (str, Path)):
|
| 257 |
+
obj = DACFile.load(obj)
|
| 258 |
+
|
| 259 |
+
original_padding = self.padding
|
| 260 |
+
self.padding = obj.padding
|
| 261 |
+
|
| 262 |
+
range_fn = range if not verbose else tqdm.trange
|
| 263 |
+
codes = obj.codes
|
| 264 |
+
original_device = codes.device
|
| 265 |
+
chunk_length = obj.chunk_length
|
| 266 |
+
recons = []
|
| 267 |
+
|
| 268 |
+
for i in range_fn(0, codes.shape[-1], chunk_length):
|
| 269 |
+
c = codes[..., i : i + chunk_length].to(self.device)
|
| 270 |
+
z = self.quantizer.from_codes(c)[0]
|
| 271 |
+
r = self.decode(z)
|
| 272 |
+
recons.append(r.to(original_device))
|
| 273 |
+
|
| 274 |
+
recons = torch.cat(recons, dim=-1)
|
| 275 |
+
recons = AudioSignal(recons, self.sample_rate)
|
| 276 |
+
|
| 277 |
+
resample_fn = recons.resample
|
| 278 |
+
loudness_fn = recons.loudness
|
| 279 |
+
|
| 280 |
+
# If audio is > 10 minutes long, use the ffmpeg versions
|
| 281 |
+
if recons.signal_duration >= 10 * 60 * 60:
|
| 282 |
+
resample_fn = recons.ffmpeg_resample
|
| 283 |
+
loudness_fn = recons.ffmpeg_loudness
|
| 284 |
+
|
| 285 |
+
recons.normalize(obj.input_db)
|
| 286 |
+
resample_fn(obj.sample_rate)
|
| 287 |
+
recons = recons[..., : obj.original_length]
|
| 288 |
+
loudness_fn()
|
| 289 |
+
recons.audio_data = recons.audio_data.reshape(
|
| 290 |
+
-1, obj.channels, obj.original_length
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
self.padding = original_padding
|
| 294 |
+
return recons
|
dac-codec/dac/model/dac.py
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import List
|
| 3 |
+
from typing import Union
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
from audiotools import AudioSignal
|
| 8 |
+
from audiotools.ml import BaseModel
|
| 9 |
+
from torch import nn
|
| 10 |
+
|
| 11 |
+
from .base import CodecMixin
|
| 12 |
+
from dac.nn.layers import Snake1d
|
| 13 |
+
from dac.nn.layers import WNConv1d
|
| 14 |
+
from dac.nn.layers import WNConvTranspose1d
|
| 15 |
+
from dac.nn.quantize import ResidualVectorQuantize
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def init_weights(m):
|
| 19 |
+
if isinstance(m, nn.Conv1d):
|
| 20 |
+
nn.init.trunc_normal_(m.weight, std=0.02)
|
| 21 |
+
nn.init.constant_(m.bias, 0)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class ResidualUnit(nn.Module):
|
| 25 |
+
def __init__(self, dim: int = 16, dilation: int = 1):
|
| 26 |
+
super().__init__()
|
| 27 |
+
pad = ((7 - 1) * dilation) // 2
|
| 28 |
+
self.block = nn.Sequential(
|
| 29 |
+
Snake1d(dim),
|
| 30 |
+
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
|
| 31 |
+
Snake1d(dim),
|
| 32 |
+
WNConv1d(dim, dim, kernel_size=1),
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
def forward(self, x):
|
| 36 |
+
y = self.block(x)
|
| 37 |
+
pad = (x.shape[-1] - y.shape[-1]) // 2
|
| 38 |
+
if pad > 0:
|
| 39 |
+
x = x[..., pad:-pad]
|
| 40 |
+
return x + y
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class EncoderBlock(nn.Module):
|
| 44 |
+
def __init__(self, dim: int = 16, stride: int = 1):
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.block = nn.Sequential(
|
| 47 |
+
ResidualUnit(dim // 2, dilation=1),
|
| 48 |
+
ResidualUnit(dim // 2, dilation=3),
|
| 49 |
+
ResidualUnit(dim // 2, dilation=9),
|
| 50 |
+
Snake1d(dim // 2),
|
| 51 |
+
WNConv1d(
|
| 52 |
+
dim // 2,
|
| 53 |
+
dim,
|
| 54 |
+
kernel_size=2 * stride,
|
| 55 |
+
stride=stride,
|
| 56 |
+
padding=math.ceil(stride / 2),
|
| 57 |
+
),
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
def forward(self, x):
|
| 61 |
+
return self.block(x)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class Encoder(nn.Module):
|
| 65 |
+
def __init__(
|
| 66 |
+
self,
|
| 67 |
+
d_model: int = 64,
|
| 68 |
+
strides: list = [2, 4, 8, 8],
|
| 69 |
+
d_latent: int = 64,
|
| 70 |
+
):
|
| 71 |
+
super().__init__()
|
| 72 |
+
# Create first convolution
|
| 73 |
+
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
|
| 74 |
+
|
| 75 |
+
# Create EncoderBlocks that double channels as they downsample by `stride`
|
| 76 |
+
for stride in strides:
|
| 77 |
+
d_model *= 2
|
| 78 |
+
self.block += [EncoderBlock(d_model, stride=stride)]
|
| 79 |
+
|
| 80 |
+
# Create last convolution
|
| 81 |
+
self.block += [
|
| 82 |
+
Snake1d(d_model),
|
| 83 |
+
WNConv1d(d_model, d_latent, kernel_size=3, padding=1),
|
| 84 |
+
]
|
| 85 |
+
|
| 86 |
+
# Wrap black into nn.Sequential
|
| 87 |
+
self.block = nn.Sequential(*self.block)
|
| 88 |
+
self.enc_dim = d_model
|
| 89 |
+
|
| 90 |
+
def forward(self, x):
|
| 91 |
+
return self.block(x)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class DecoderBlock(nn.Module):
|
| 95 |
+
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1):
|
| 96 |
+
super().__init__()
|
| 97 |
+
self.block = nn.Sequential(
|
| 98 |
+
Snake1d(input_dim),
|
| 99 |
+
WNConvTranspose1d(
|
| 100 |
+
input_dim,
|
| 101 |
+
output_dim,
|
| 102 |
+
kernel_size=2 * stride,
|
| 103 |
+
stride=stride,
|
| 104 |
+
padding=math.ceil(stride / 2),
|
| 105 |
+
),
|
| 106 |
+
ResidualUnit(output_dim, dilation=1),
|
| 107 |
+
ResidualUnit(output_dim, dilation=3),
|
| 108 |
+
ResidualUnit(output_dim, dilation=9),
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
def forward(self, x):
|
| 112 |
+
return self.block(x)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class Decoder(nn.Module):
|
| 116 |
+
def __init__(
|
| 117 |
+
self,
|
| 118 |
+
input_channel,
|
| 119 |
+
channels,
|
| 120 |
+
rates,
|
| 121 |
+
d_out: int = 1,
|
| 122 |
+
):
|
| 123 |
+
super().__init__()
|
| 124 |
+
|
| 125 |
+
# Add first conv layer
|
| 126 |
+
layers = [WNConv1d(input_channel, channels, kernel_size=7, padding=3)]
|
| 127 |
+
|
| 128 |
+
# Add upsampling + MRF blocks
|
| 129 |
+
for i, stride in enumerate(rates):
|
| 130 |
+
input_dim = channels // 2**i
|
| 131 |
+
output_dim = channels // 2 ** (i + 1)
|
| 132 |
+
layers += [DecoderBlock(input_dim, output_dim, stride)]
|
| 133 |
+
|
| 134 |
+
# Add final conv layer
|
| 135 |
+
layers += [
|
| 136 |
+
Snake1d(output_dim),
|
| 137 |
+
WNConv1d(output_dim, d_out, kernel_size=7, padding=3),
|
| 138 |
+
nn.Tanh(),
|
| 139 |
+
]
|
| 140 |
+
|
| 141 |
+
self.model = nn.Sequential(*layers)
|
| 142 |
+
|
| 143 |
+
def forward(self, x):
|
| 144 |
+
return self.model(x)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
class DAC(BaseModel, CodecMixin):
|
| 148 |
+
def __init__(
|
| 149 |
+
self,
|
| 150 |
+
encoder_dim: int = 64,
|
| 151 |
+
encoder_rates: List[int] = [2, 4, 8, 8],
|
| 152 |
+
latent_dim: int = None,
|
| 153 |
+
decoder_dim: int = 1536,
|
| 154 |
+
decoder_rates: List[int] = [8, 8, 4, 2],
|
| 155 |
+
n_codebooks: int = 9,
|
| 156 |
+
codebook_size: int = 1024,
|
| 157 |
+
codebook_dim: Union[int, list] = 8,
|
| 158 |
+
quantizer_dropout: bool = False,
|
| 159 |
+
sample_rate: int = 44100,
|
| 160 |
+
):
|
| 161 |
+
super().__init__()
|
| 162 |
+
|
| 163 |
+
self.encoder_dim = encoder_dim
|
| 164 |
+
self.encoder_rates = encoder_rates
|
| 165 |
+
self.decoder_dim = decoder_dim
|
| 166 |
+
self.decoder_rates = decoder_rates
|
| 167 |
+
self.sample_rate = sample_rate
|
| 168 |
+
|
| 169 |
+
if latent_dim is None:
|
| 170 |
+
latent_dim = encoder_dim * (2 ** len(encoder_rates))
|
| 171 |
+
|
| 172 |
+
self.latent_dim = latent_dim
|
| 173 |
+
|
| 174 |
+
self.hop_length = np.prod(encoder_rates)
|
| 175 |
+
self.encoder = Encoder(encoder_dim, encoder_rates, latent_dim)
|
| 176 |
+
|
| 177 |
+
self.n_codebooks = n_codebooks
|
| 178 |
+
self.codebook_size = codebook_size
|
| 179 |
+
self.codebook_dim = codebook_dim
|
| 180 |
+
self.quantizer = ResidualVectorQuantize(
|
| 181 |
+
input_dim=latent_dim,
|
| 182 |
+
n_codebooks=n_codebooks,
|
| 183 |
+
codebook_size=codebook_size,
|
| 184 |
+
codebook_dim=codebook_dim,
|
| 185 |
+
quantizer_dropout=quantizer_dropout,
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
self.decoder = Decoder(
|
| 189 |
+
latent_dim,
|
| 190 |
+
decoder_dim,
|
| 191 |
+
decoder_rates,
|
| 192 |
+
)
|
| 193 |
+
self.sample_rate = sample_rate
|
| 194 |
+
self.apply(init_weights)
|
| 195 |
+
|
| 196 |
+
self.delay = self.get_delay()
|
| 197 |
+
|
| 198 |
+
def preprocess(self, audio_data, sample_rate):
|
| 199 |
+
if sample_rate is None:
|
| 200 |
+
sample_rate = self.sample_rate
|
| 201 |
+
assert sample_rate == self.sample_rate
|
| 202 |
+
|
| 203 |
+
length = audio_data.shape[-1]
|
| 204 |
+
right_pad = math.ceil(length / self.hop_length) * self.hop_length - length
|
| 205 |
+
audio_data = nn.functional.pad(audio_data, (0, right_pad))
|
| 206 |
+
|
| 207 |
+
return audio_data
|
| 208 |
+
|
| 209 |
+
def encode(
|
| 210 |
+
self,
|
| 211 |
+
audio_data: torch.Tensor,
|
| 212 |
+
n_quantizers: int = None,
|
| 213 |
+
):
|
| 214 |
+
"""Encode given audio data and return quantized latent codes
|
| 215 |
+
|
| 216 |
+
Parameters
|
| 217 |
+
----------
|
| 218 |
+
audio_data : Tensor[B x 1 x T]
|
| 219 |
+
Audio data to encode
|
| 220 |
+
n_quantizers : int, optional
|
| 221 |
+
Number of quantizers to use, by default None
|
| 222 |
+
If None, all quantizers are used.
|
| 223 |
+
|
| 224 |
+
Returns
|
| 225 |
+
-------
|
| 226 |
+
dict
|
| 227 |
+
A dictionary with the following keys:
|
| 228 |
+
"z" : Tensor[B x D x T]
|
| 229 |
+
Quantized continuous representation of input
|
| 230 |
+
"codes" : Tensor[B x N x T]
|
| 231 |
+
Codebook indices for each codebook
|
| 232 |
+
(quantized discrete representation of input)
|
| 233 |
+
"latents" : Tensor[B x N*D x T]
|
| 234 |
+
Projected latents (continuous representation of input before quantization)
|
| 235 |
+
"vq/commitment_loss" : Tensor[1]
|
| 236 |
+
Commitment loss to train encoder to predict vectors closer to codebook
|
| 237 |
+
entries
|
| 238 |
+
"vq/codebook_loss" : Tensor[1]
|
| 239 |
+
Codebook loss to update the codebook
|
| 240 |
+
"length" : int
|
| 241 |
+
Number of samples in input audio
|
| 242 |
+
"""
|
| 243 |
+
z = self.encoder(audio_data)
|
| 244 |
+
z, codes, latents, commitment_loss, codebook_loss = self.quantizer(
|
| 245 |
+
z, n_quantizers
|
| 246 |
+
)
|
| 247 |
+
return z, codes, latents, commitment_loss, codebook_loss
|
| 248 |
+
|
| 249 |
+
def decode(self, z: torch.Tensor):
|
| 250 |
+
"""Decode given latent codes and return audio data
|
| 251 |
+
|
| 252 |
+
Parameters
|
| 253 |
+
----------
|
| 254 |
+
z : Tensor[B x D x T]
|
| 255 |
+
Quantized continuous representation of input
|
| 256 |
+
length : int, optional
|
| 257 |
+
Number of samples in output audio, by default None
|
| 258 |
+
|
| 259 |
+
Returns
|
| 260 |
+
-------
|
| 261 |
+
dict
|
| 262 |
+
A dictionary with the following keys:
|
| 263 |
+
"audio" : Tensor[B x 1 x length]
|
| 264 |
+
Decoded audio data.
|
| 265 |
+
"""
|
| 266 |
+
return self.decoder(z)
|
| 267 |
+
|
| 268 |
+
def forward(
|
| 269 |
+
self,
|
| 270 |
+
audio_data: torch.Tensor,
|
| 271 |
+
sample_rate: int = None,
|
| 272 |
+
n_quantizers: int = None,
|
| 273 |
+
):
|
| 274 |
+
"""Model forward pass
|
| 275 |
+
|
| 276 |
+
Parameters
|
| 277 |
+
----------
|
| 278 |
+
audio_data : Tensor[B x 1 x T]
|
| 279 |
+
Audio data to encode
|
| 280 |
+
sample_rate : int, optional
|
| 281 |
+
Sample rate of audio data in Hz, by default None
|
| 282 |
+
If None, defaults to `self.sample_rate`
|
| 283 |
+
n_quantizers : int, optional
|
| 284 |
+
Number of quantizers to use, by default None.
|
| 285 |
+
If None, all quantizers are used.
|
| 286 |
+
|
| 287 |
+
Returns
|
| 288 |
+
-------
|
| 289 |
+
dict
|
| 290 |
+
A dictionary with the following keys:
|
| 291 |
+
"z" : Tensor[B x D x T]
|
| 292 |
+
Quantized continuous representation of input
|
| 293 |
+
"codes" : Tensor[B x N x T]
|
| 294 |
+
Codebook indices for each codebook
|
| 295 |
+
(quantized discrete representation of input)
|
| 296 |
+
"latents" : Tensor[B x N*D x T]
|
| 297 |
+
Projected latents (continuous representation of input before quantization)
|
| 298 |
+
"vq/commitment_loss" : Tensor[1]
|
| 299 |
+
Commitment loss to train encoder to predict vectors closer to codebook
|
| 300 |
+
entries
|
| 301 |
+
"vq/codebook_loss" : Tensor[1]
|
| 302 |
+
Codebook loss to update the codebook
|
| 303 |
+
"length" : int
|
| 304 |
+
Number of samples in input audio
|
| 305 |
+
"audio" : Tensor[B x 1 x length]
|
| 306 |
+
Decoded audio data.
|
| 307 |
+
"""
|
| 308 |
+
length = audio_data.shape[-1]
|
| 309 |
+
audio_data = self.preprocess(audio_data, sample_rate)
|
| 310 |
+
z, codes, latents, commitment_loss, codebook_loss = self.encode(
|
| 311 |
+
audio_data, n_quantizers
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
x = self.decode(z)
|
| 315 |
+
return {
|
| 316 |
+
"audio": x[..., :length],
|
| 317 |
+
"z": z,
|
| 318 |
+
"codes": codes,
|
| 319 |
+
"latents": latents,
|
| 320 |
+
"vq/commitment_loss": commitment_loss,
|
| 321 |
+
"vq/codebook_loss": codebook_loss,
|
| 322 |
+
}
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
if __name__ == "__main__":
|
| 326 |
+
import numpy as np
|
| 327 |
+
from functools import partial
|
| 328 |
+
|
| 329 |
+
model = DAC().to("cpu")
|
| 330 |
+
|
| 331 |
+
for n, m in model.named_modules():
|
| 332 |
+
o = m.extra_repr()
|
| 333 |
+
p = sum([np.prod(p.size()) for p in m.parameters()])
|
| 334 |
+
fn = lambda o, p: o + f" {p/1e6:<.3f}M params."
|
| 335 |
+
setattr(m, "extra_repr", partial(fn, o=o, p=p))
|
| 336 |
+
print(model)
|
| 337 |
+
print("Total # of params: ", sum([np.prod(p.size()) for p in model.parameters()]))
|
| 338 |
+
|
| 339 |
+
length = 88200 * 2
|
| 340 |
+
x = torch.randn(1, 1, length).to(model.device)
|
| 341 |
+
x.requires_grad_(True)
|
| 342 |
+
x.retain_grad()
|
| 343 |
+
|
| 344 |
+
# Make a forward pass
|
| 345 |
+
out = model(x)["audio"]
|
| 346 |
+
print("Input shape:", x.shape)
|
| 347 |
+
print("Output shape:", out.shape)
|
| 348 |
+
|
| 349 |
+
# Create gradient variable
|
| 350 |
+
grad = torch.zeros_like(out)
|
| 351 |
+
grad[:, :, grad.shape[-1] // 2] = 1
|
| 352 |
+
|
| 353 |
+
# Make a backward pass
|
| 354 |
+
out.backward(grad)
|
| 355 |
+
|
| 356 |
+
# Check non-zero values
|
| 357 |
+
gradmap = x.grad.squeeze(0)
|
| 358 |
+
gradmap = (gradmap != 0).sum(0) # sum across features
|
| 359 |
+
rf = (gradmap != 0).sum()
|
| 360 |
+
|
| 361 |
+
print(f"Receptive field: {rf.item()}")
|
| 362 |
+
|
| 363 |
+
x = AudioSignal(torch.randn(1, 1, 44100 * 60), 44100)
|
| 364 |
+
model.decompress(model.compress(x, verbose=True), verbose=True)
|
dac-codec/dac/model/discriminator.py
ADDED
|
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from audiotools import AudioSignal
|
| 5 |
+
from audiotools import ml
|
| 6 |
+
from audiotools import STFTParams
|
| 7 |
+
from einops import rearrange
|
| 8 |
+
from torch.nn.utils import weight_norm
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def WNConv1d(*args, **kwargs):
|
| 12 |
+
act = kwargs.pop("act", True)
|
| 13 |
+
conv = weight_norm(nn.Conv1d(*args, **kwargs))
|
| 14 |
+
if not act:
|
| 15 |
+
return conv
|
| 16 |
+
return nn.Sequential(conv, nn.LeakyReLU(0.1))
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def WNConv2d(*args, **kwargs):
|
| 20 |
+
act = kwargs.pop("act", True)
|
| 21 |
+
conv = weight_norm(nn.Conv2d(*args, **kwargs))
|
| 22 |
+
if not act:
|
| 23 |
+
return conv
|
| 24 |
+
return nn.Sequential(conv, nn.LeakyReLU(0.1))
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class MPD(nn.Module):
|
| 28 |
+
def __init__(self, period):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.period = period
|
| 31 |
+
self.convs = nn.ModuleList(
|
| 32 |
+
[
|
| 33 |
+
WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)),
|
| 34 |
+
WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
|
| 35 |
+
WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
|
| 36 |
+
WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
|
| 37 |
+
WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
|
| 38 |
+
]
|
| 39 |
+
)
|
| 40 |
+
self.conv_post = WNConv2d(
|
| 41 |
+
1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
def pad_to_period(self, x):
|
| 45 |
+
t = x.shape[-1]
|
| 46 |
+
x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
|
| 47 |
+
return x
|
| 48 |
+
|
| 49 |
+
def forward(self, x):
|
| 50 |
+
fmap = []
|
| 51 |
+
|
| 52 |
+
x = self.pad_to_period(x)
|
| 53 |
+
x = rearrange(x, "b c (l p) -> b c l p", p=self.period)
|
| 54 |
+
|
| 55 |
+
for layer in self.convs:
|
| 56 |
+
x = layer(x)
|
| 57 |
+
fmap.append(x)
|
| 58 |
+
|
| 59 |
+
x = self.conv_post(x)
|
| 60 |
+
fmap.append(x)
|
| 61 |
+
|
| 62 |
+
return fmap
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class MSD(nn.Module):
|
| 66 |
+
def __init__(self, rate: int = 1, sample_rate: int = 44100):
|
| 67 |
+
super().__init__()
|
| 68 |
+
self.convs = nn.ModuleList(
|
| 69 |
+
[
|
| 70 |
+
WNConv1d(1, 16, 15, 1, padding=7),
|
| 71 |
+
WNConv1d(16, 64, 41, 4, groups=4, padding=20),
|
| 72 |
+
WNConv1d(64, 256, 41, 4, groups=16, padding=20),
|
| 73 |
+
WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
|
| 74 |
+
WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
|
| 75 |
+
WNConv1d(1024, 1024, 5, 1, padding=2),
|
| 76 |
+
]
|
| 77 |
+
)
|
| 78 |
+
self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
|
| 79 |
+
self.sample_rate = sample_rate
|
| 80 |
+
self.rate = rate
|
| 81 |
+
|
| 82 |
+
def forward(self, x):
|
| 83 |
+
x = AudioSignal(x, self.sample_rate)
|
| 84 |
+
x.resample(self.sample_rate // self.rate)
|
| 85 |
+
x = x.audio_data
|
| 86 |
+
|
| 87 |
+
fmap = []
|
| 88 |
+
|
| 89 |
+
for l in self.convs:
|
| 90 |
+
x = l(x)
|
| 91 |
+
fmap.append(x)
|
| 92 |
+
x = self.conv_post(x)
|
| 93 |
+
fmap.append(x)
|
| 94 |
+
|
| 95 |
+
return fmap
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class MRD(nn.Module):
|
| 102 |
+
def __init__(
|
| 103 |
+
self,
|
| 104 |
+
window_length: int,
|
| 105 |
+
hop_factor: float = 0.25,
|
| 106 |
+
sample_rate: int = 44100,
|
| 107 |
+
bands: list = BANDS,
|
| 108 |
+
):
|
| 109 |
+
"""Complex multi-band spectrogram discriminator.
|
| 110 |
+
Parameters
|
| 111 |
+
----------
|
| 112 |
+
window_length : int
|
| 113 |
+
Window length of STFT.
|
| 114 |
+
hop_factor : float, optional
|
| 115 |
+
Hop factor of the STFT, defaults to ``0.25 * window_length``.
|
| 116 |
+
sample_rate : int, optional
|
| 117 |
+
Sampling rate of audio in Hz, by default 44100
|
| 118 |
+
bands : list, optional
|
| 119 |
+
Bands to run discriminator over.
|
| 120 |
+
"""
|
| 121 |
+
super().__init__()
|
| 122 |
+
|
| 123 |
+
self.window_length = window_length
|
| 124 |
+
self.hop_factor = hop_factor
|
| 125 |
+
self.sample_rate = sample_rate
|
| 126 |
+
self.stft_params = STFTParams(
|
| 127 |
+
window_length=window_length,
|
| 128 |
+
hop_length=int(window_length * hop_factor),
|
| 129 |
+
match_stride=True,
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
n_fft = window_length // 2 + 1
|
| 133 |
+
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
| 134 |
+
self.bands = bands
|
| 135 |
+
|
| 136 |
+
ch = 32
|
| 137 |
+
convs = lambda: nn.ModuleList(
|
| 138 |
+
[
|
| 139 |
+
WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
|
| 140 |
+
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
| 141 |
+
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
| 142 |
+
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
| 143 |
+
WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
|
| 144 |
+
]
|
| 145 |
+
)
|
| 146 |
+
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
| 147 |
+
self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)
|
| 148 |
+
|
| 149 |
+
def spectrogram(self, x):
|
| 150 |
+
x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
|
| 151 |
+
x = torch.view_as_real(x.stft())
|
| 152 |
+
x = rearrange(x, "b 1 f t c -> (b 1) c t f")
|
| 153 |
+
# Split into bands
|
| 154 |
+
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
|
| 155 |
+
return x_bands
|
| 156 |
+
|
| 157 |
+
def forward(self, x):
|
| 158 |
+
x_bands = self.spectrogram(x)
|
| 159 |
+
fmap = []
|
| 160 |
+
|
| 161 |
+
x = []
|
| 162 |
+
for band, stack in zip(x_bands, self.band_convs):
|
| 163 |
+
for layer in stack:
|
| 164 |
+
band = layer(band)
|
| 165 |
+
fmap.append(band)
|
| 166 |
+
x.append(band)
|
| 167 |
+
|
| 168 |
+
x = torch.cat(x, dim=-1)
|
| 169 |
+
x = self.conv_post(x)
|
| 170 |
+
fmap.append(x)
|
| 171 |
+
|
| 172 |
+
return fmap
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
class Discriminator(ml.BaseModel):
|
| 176 |
+
def __init__(
|
| 177 |
+
self,
|
| 178 |
+
rates: list = [],
|
| 179 |
+
periods: list = [2, 3, 5, 7, 11],
|
| 180 |
+
fft_sizes: list = [2048, 1024, 512],
|
| 181 |
+
sample_rate: int = 44100,
|
| 182 |
+
bands: list = BANDS,
|
| 183 |
+
):
|
| 184 |
+
"""Discriminator that combines multiple discriminators.
|
| 185 |
+
|
| 186 |
+
Parameters
|
| 187 |
+
----------
|
| 188 |
+
rates : list, optional
|
| 189 |
+
sampling rates (in Hz) to run MSD at, by default []
|
| 190 |
+
If empty, MSD is not used.
|
| 191 |
+
periods : list, optional
|
| 192 |
+
periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11]
|
| 193 |
+
fft_sizes : list, optional
|
| 194 |
+
Window sizes of the FFT to run MRD at, by default [2048, 1024, 512]
|
| 195 |
+
sample_rate : int, optional
|
| 196 |
+
Sampling rate of audio in Hz, by default 44100
|
| 197 |
+
bands : list, optional
|
| 198 |
+
Bands to run MRD at, by default `BANDS`
|
| 199 |
+
"""
|
| 200 |
+
super().__init__()
|
| 201 |
+
discs = []
|
| 202 |
+
discs += [MPD(p) for p in periods]
|
| 203 |
+
discs += [MSD(r, sample_rate=sample_rate) for r in rates]
|
| 204 |
+
discs += [MRD(f, sample_rate=sample_rate, bands=bands) for f in fft_sizes]
|
| 205 |
+
self.discriminators = nn.ModuleList(discs)
|
| 206 |
+
|
| 207 |
+
def preprocess(self, y):
|
| 208 |
+
# Remove DC offset
|
| 209 |
+
y = y - y.mean(dim=-1, keepdims=True)
|
| 210 |
+
# Peak normalize the volume of input audio
|
| 211 |
+
y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
| 212 |
+
return y
|
| 213 |
+
|
| 214 |
+
def forward(self, x):
|
| 215 |
+
x = self.preprocess(x)
|
| 216 |
+
fmaps = [d(x) for d in self.discriminators]
|
| 217 |
+
return fmaps
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
if __name__ == "__main__":
|
| 221 |
+
disc = Discriminator()
|
| 222 |
+
x = torch.zeros(1, 1, 44100)
|
| 223 |
+
results = disc(x)
|
| 224 |
+
for i, result in enumerate(results):
|
| 225 |
+
print(f"disc{i}")
|
| 226 |
+
for i, r in enumerate(result):
|
| 227 |
+
print(r.shape, r.mean(), r.min(), r.max())
|
| 228 |
+
print()
|
dac-codec/dac/nn/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from . import layers
|
| 2 |
+
from . import loss
|
| 3 |
+
from . import quantize
|
dac-codec/dac/nn/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (249 Bytes). View file
|
|
|
dac-codec/dac/nn/__pycache__/layers.cpython-310.pyc
ADDED
|
Binary file (1.48 kB). View file
|
|
|