chat-doctor-kr / app.py
ttagu99's picture
state clear
6703418
raw
history blame
4.74 kB
# %%
import os, json, itertools, bisect, gc
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import transformers
import torch
from accelerate import Accelerator
import accelerate
import time
import os
import gradio as gr
import requests
import random
import googletrans
translator = googletrans.Translator()
model = None
tokenizer = None
generator = None
os.environ["CUDA_VISIBLE_DEVICES"]=""
def load_model(model_name, eight_bit=0, device_map="auto"):
global model, tokenizer, generator
print("Loading "+model_name+"...")
if device_map == "zero":
device_map = "balanced_low_0"
# config
gpu_count = torch.cuda.device_count()
print('gpu_count', gpu_count)
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
print(model_name)
tokenizer = transformers.LLaMATokenizer.from_pretrained(model_name)
model = transformers.LLaMAForCausalLM.from_pretrained(
model_name,
#device_map=device_map,
#device_map="auto",
torch_dtype=torch_dtype,
#max_memory = {0: "14GB", 1: "14GB", 2: "14GB", 3: "14GB",4: "14GB",5: "14GB",6: "14GB",7: "14GB"},
#load_in_8bit=eight_bit,
#from_tf=True,
low_cpu_mem_usage=True,
load_in_8bit=False,
cache_dir="cache"
)
if torch.cuda.is_available():
model = model.cuda()
else:
model = model.cpu()
generator = model.generate
# chat doctor
def chatdoctor(input, state):
# print('input',input)
# history = history or []
print('state',state)
invitation = "ChatDoctor: "
human_invitation = "Patient: "
fulltext = "If you are a doctor, please answer the medical questions based on the patient's description. \n\n"
for i in range(len(state)):
if i % 2:
fulltext += human_invitation + state[i] + "\n\n"
else:
fulltext += invitation + state[i] + "\n\n"
fulltext += human_invitation + input + "\n\n"
fulltext += invitation
print('fulltext: ',fulltext)
generated_text = ""
gen_in = tokenizer(fulltext, return_tensors="pt").input_ids
if torch.cuda.is_available():
gen_in = gen_in.cuda()
else:
gen_in = gen_in.cpu()
in_tokens = len(gen_in)
print('len token',in_tokens)
with torch.no_grad():
generated_ids = generator(
gen_in,
max_new_tokens=200,
use_cache=True,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=1,
do_sample=True,
repetition_penalty=1.1, # 1.0 means 'off'. unfortunately if we penalize it it will not output Sphynx:
temperature=0.5, # default: 1.0
top_k = 50, # default: 50
top_p = 1.0, # default: 1.0
early_stopping=True,
)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # for some reason, batch_decode returns an array of one element?
text_without_prompt = generated_text[len(fulltext):]
response = text_without_prompt
response = response.split(human_invitation)[0]
response.strip()
print(invitation + response)
print("")
return response
def predict(input, chatbot, state):
print('predict state: ', state)
# input์— ํ•œ๊ตญ์–ด๊ฐ€ detect ๋˜๋ฉด ์˜์–ด๋กœ ๋ณ€๊ฒฝ, ์•„๋‹ˆ๋ฉด ๊ทธ๋Œ€๋กœ
is_kor = True
if googletrans.Translator().detect(input).lang == 'ko':
en_input = translator.translate(input, src='ko', dest='en').text
else:
en_input = input
is_kor = False
response = chatdoctor(en_input, state)
if is_kor:
ko_response = translator.translate(response, src='en', dest='ko').text
else:
ko_response = response
state.append(response)
chatbot.append((input, ko_response))
return chatbot, state
load_model("mnc-ai/chatdoctor")
with gr.Blocks() as demo:
gr.Markdown("""<h1><center>์ฑ— ๋‹ฅํ„ฐ์ž…๋‹ˆ๋‹ค. ์–ด๋””๊ฐ€ ๋ถˆํŽธํ•˜์‹ ๊ฐ€์š”?</center></h1>
""")
chatbot = gr.Chatbot()
state = gr.State([])
with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="์—ฌ๊ธฐ์— ์งˆ๋ฌธ์„ ์“ฐ๊ณ  ์—”ํ„ฐ").style(container=False)
clear = gr.Button("์ƒ๋‹ด ์ƒˆ๋กœ ์‹œ์ž‘")
txt.submit(predict, inputs=[txt, chatbot, state], outputs=[chatbot, state], queue=False )
txt.submit(lambda x: "", txt, txt)
clear.click(lambda: None, None, chatbot, queue=False)
clear.click(lambda x: "", txt, txt)
# clear ํด๋ฆญ ์‹œ state ์ดˆ๊ธฐํ™”
clear.click(lambda x: [], state, state)
demo.launch()