MNCJihun's picture
init
25322fb
import os
import sys
import matplotlib.pyplot as plt
from pandas.core.common import flatten
import torch
from torch import nn
from torch import optim
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets, transforms, models
import albumentations as A
from albumentations.pytorch import ToTensorV2
from tqdm import tqdm
import random
import cv2
sys.path.append('/workspace')
import dataset
import argparse
def parse_args():
parser = argparse.ArgumentParser(description='MiSLAS training (Stage-2)')
parser.add_argument('--input',
help='test image path',
required=True,
type=str)
args = parser.parse_args()
return args
classes = ('no_trunk', 'trunk')
test_transforms = A.Compose(
[
A.SmallestMaxSize(max_size=350),
A.CenterCrop(height=256, width=256),
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
ToTensorV2(),
]
)
def main():
args = parse_args()
assert os.path.exists(args.input)
device = torch.device("cuda:3") if torch.cuda.is_available() else torch.device("cpu")
model = models.resnet50(pretrained=True)
model.fc = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(model.fc.in_features, 2)
)
state_dict = torch.load('./result/best_model.pth')
model.load_state_dict(state_dict)
for _, p in model.named_parameters():
p.requires_grad = False
model.to(device)
model.eval()
test_transforms = A.Compose(
[
A.SmallestMaxSize(max_size=350),
A.CenterCrop(height=256, width=256),
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
ToTensorV2(),
]
)
image = cv2.imread(args.input)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = test_transforms(image=image)["image"]
image = torch.unsqueeze(image, 0).to(device)
output = model(image)
_, preds = output.max(1)
input_cls = 'trunk' if 't_' in args.input else 'no_trunk'
print("input: %s \n" %(input_cls))
print("output: %s" %(classes[preds.item()]))
if __name__ == '__main__':
main()