|
import spaces |
|
import torch |
|
import librosa |
|
import torchaudio |
|
import numpy as np |
|
from pydub import AudioSegment |
|
from hf_utils import load_custom_model_from_hf |
|
|
|
DEFAULT_REPO_ID = "Plachta/Seed-VC" |
|
DEFAULT_CFM_CHECKPOINT = "v2/cfm_small.pth" |
|
DEFAULT_AR_CHECKPOINT = "v2/ar_base.pth" |
|
|
|
DEFAULT_CE_REPO_ID = "Plachta/ASTRAL-quantization" |
|
DEFAULT_CE_NARROW_CHECKPOINT = "bsq32/bsq32_light.pth" |
|
DEFAULT_CE_WIDE_CHECKPOINT = "bsq2048/bsq2048_light.pth" |
|
|
|
DEFAULT_SE_REPO_ID = "funasr/campplus" |
|
DEFAULT_SE_CHECKPOINT = "campplus_cn_common.bin" |
|
|
|
class VoiceConversionWrapper(torch.nn.Module): |
|
def __init__( |
|
self, |
|
sr: int, |
|
hop_size: int, |
|
mel_fn: callable, |
|
cfm: torch.nn.Module, |
|
cfm_length_regulator: torch.nn.Module, |
|
content_extractor_narrow: torch.nn.Module, |
|
content_extractor_wide: torch.nn.Module, |
|
ar_length_regulator: torch.nn.Module, |
|
ar: torch.nn.Module, |
|
style_encoder: torch.nn.Module, |
|
vocoder: torch.nn.Module, |
|
): |
|
super(VoiceConversionWrapper, self).__init__() |
|
self.sr = sr |
|
self.hop_size = hop_size |
|
self.mel_fn = mel_fn |
|
self.cfm = cfm |
|
self.cfm_length_regulator = cfm_length_regulator |
|
self.content_extractor_narrow = content_extractor_narrow |
|
self.content_extractor_wide = content_extractor_wide |
|
self.vocoder = vocoder |
|
self.ar_length_regulator = ar_length_regulator |
|
self.ar = ar |
|
self.style_encoder = style_encoder |
|
|
|
self.overlap_frame_len = 16 |
|
self.bitrate = "320k" |
|
self.compiled_decode_fn = None |
|
self.dit_compiled = False |
|
self.dit_max_context_len = 30 |
|
self.ar_max_content_len = 1500 |
|
self.compile_len = 87 * self.dit_max_context_len |
|
|
|
def compile_ar(self): |
|
""" |
|
Compile the AR model for inference. |
|
""" |
|
self.compiled_decode_fn = torch.compile( |
|
self.ar.model.forward_generate, |
|
fullgraph=True, |
|
backend="inductor" if torch.cuda.is_available() else "aot_eager", |
|
mode="reduce-overhead" if torch.cuda.is_available() else None, |
|
) |
|
|
|
def compile_cfm(self): |
|
self.cfm.estimator.transformer = torch.compile( |
|
self.cfm.estimator.transformer, |
|
fullgraph=True, |
|
backend="inductor" if torch.cuda.is_available() else "aot_eager", |
|
mode="reduce-overhead" if torch.cuda.is_available() else None, |
|
) |
|
self.dit_compiled = True |
|
|
|
@staticmethod |
|
def strip_prefix(state_dict: dict, prefix: str = "module.") -> dict: |
|
""" |
|
Strip the prefix from the state_dict keys. |
|
""" |
|
new_state_dict = {} |
|
for k, v in state_dict.items(): |
|
if k.startswith(prefix): |
|
new_key = k[len(prefix):] |
|
else: |
|
new_key = k |
|
new_state_dict[new_key] = v |
|
return new_state_dict |
|
|
|
@staticmethod |
|
def duration_reduction_func(token_seq, n_gram=1): |
|
""" |
|
Args: |
|
token_seq: (T,) |
|
Returns: |
|
reduced_token_seq: (T') |
|
reduced_token_seq_len: T' |
|
""" |
|
n_gram_seq = token_seq.unfold(0, n_gram, 1) |
|
mask = torch.all(n_gram_seq[1:] != n_gram_seq[:-1], dim=1) |
|
reduced_token_seq = torch.cat( |
|
(n_gram_seq[0, :n_gram], n_gram_seq[1:, -1][mask]) |
|
) |
|
return reduced_token_seq, len(reduced_token_seq) |
|
|
|
@staticmethod |
|
def crossfade(chunk1, chunk2, overlap): |
|
"""Apply crossfade between two audio chunks.""" |
|
fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2 |
|
fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2 |
|
if len(chunk2) < overlap: |
|
chunk2[:overlap] = chunk2[:overlap] * fade_in[:len(chunk2)] + (chunk1[-overlap:] * fade_out)[:len(chunk2)] |
|
else: |
|
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out |
|
return chunk2 |
|
|
|
def _stream_wave_chunks(self, vc_wave, processed_frames, vc_mel, overlap_wave_len, |
|
generated_wave_chunks, previous_chunk, is_last_chunk, stream_output): |
|
""" |
|
Helper method to handle streaming wave chunks. |
|
|
|
Args: |
|
vc_wave: The current wave chunk |
|
processed_frames: Number of frames processed so far |
|
vc_mel: The mel spectrogram |
|
overlap_wave_len: Length of overlap between chunks |
|
generated_wave_chunks: List of generated wave chunks |
|
previous_chunk: Previous wave chunk for crossfading |
|
is_last_chunk: Whether this is the last chunk |
|
stream_output: Whether to stream the output |
|
|
|
Returns: |
|
Tuple of (processed_frames, previous_chunk, should_break, mp3_bytes, full_audio) |
|
where should_break indicates if processing should stop |
|
mp3_bytes is the MP3 bytes if streaming, None otherwise |
|
full_audio is the full audio if this is the last chunk, None otherwise |
|
""" |
|
mp3_bytes = None |
|
full_audio = None |
|
|
|
if processed_frames == 0: |
|
if is_last_chunk: |
|
output_wave = vc_wave[0].cpu().numpy() |
|
generated_wave_chunks.append(output_wave) |
|
|
|
if stream_output: |
|
output_wave_int16 = (output_wave * 32768.0).astype(np.int16) |
|
mp3_bytes = AudioSegment( |
|
output_wave_int16.tobytes(), frame_rate=self.sr, |
|
sample_width=output_wave_int16.dtype.itemsize, channels=1 |
|
).export(format="mp3", bitrate=self.bitrate).read() |
|
full_audio = (self.sr, np.concatenate(generated_wave_chunks)) |
|
else: |
|
return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks) |
|
|
|
return processed_frames, previous_chunk, True, mp3_bytes, full_audio |
|
|
|
output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy() |
|
generated_wave_chunks.append(output_wave) |
|
previous_chunk = vc_wave[0, -overlap_wave_len:] |
|
processed_frames += vc_mel.size(2) - self.overlap_frame_len |
|
|
|
if stream_output: |
|
output_wave_int16 = (output_wave * 32768.0).astype(np.int16) |
|
mp3_bytes = AudioSegment( |
|
output_wave_int16.tobytes(), frame_rate=self.sr, |
|
sample_width=output_wave_int16.dtype.itemsize, channels=1 |
|
).export(format="mp3", bitrate=self.bitrate).read() |
|
|
|
elif is_last_chunk: |
|
output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len) |
|
generated_wave_chunks.append(output_wave) |
|
processed_frames += vc_mel.size(2) - self.overlap_frame_len |
|
|
|
if stream_output: |
|
output_wave_int16 = (output_wave * 32768.0).astype(np.int16) |
|
mp3_bytes = AudioSegment( |
|
output_wave_int16.tobytes(), frame_rate=self.sr, |
|
sample_width=output_wave_int16.dtype.itemsize, channels=1 |
|
).export(format="mp3", bitrate=self.bitrate).read() |
|
full_audio = (self.sr, np.concatenate(generated_wave_chunks)) |
|
else: |
|
return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks) |
|
|
|
return processed_frames, previous_chunk, True, mp3_bytes, full_audio |
|
|
|
else: |
|
output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len) |
|
generated_wave_chunks.append(output_wave) |
|
previous_chunk = vc_wave[0, -overlap_wave_len:] |
|
processed_frames += vc_mel.size(2) - self.overlap_frame_len |
|
|
|
if stream_output: |
|
output_wave_int16 = (output_wave * 32768.0).astype(np.int16) |
|
mp3_bytes = AudioSegment( |
|
output_wave_int16.tobytes(), frame_rate=self.sr, |
|
sample_width=output_wave_int16.dtype.itemsize, channels=1 |
|
).export(format="mp3", bitrate=self.bitrate).read() |
|
|
|
return processed_frames, previous_chunk, False, mp3_bytes, full_audio |
|
|
|
def load_checkpoints( |
|
self, |
|
cfm_checkpoint_path = None, |
|
ar_checkpoint_path = None, |
|
): |
|
if cfm_checkpoint_path is None: |
|
cfm_checkpoint_path = load_custom_model_from_hf( |
|
repo_id=DEFAULT_REPO_ID, |
|
model_filename=DEFAULT_CFM_CHECKPOINT, |
|
) |
|
if ar_checkpoint_path is None: |
|
ar_checkpoint_path = load_custom_model_from_hf( |
|
repo_id=DEFAULT_REPO_ID, |
|
model_filename=DEFAULT_AR_CHECKPOINT, |
|
) |
|
|
|
cfm_checkpoint = torch.load(cfm_checkpoint_path, map_location="cpu") |
|
cfm_length_regulator_state_dict = self.strip_prefix(cfm_checkpoint["net"]['length_regulator'], "module.") |
|
cfm_state_dict = self.strip_prefix(cfm_checkpoint["net"]['cfm'], "module.") |
|
self.cfm.load_state_dict(cfm_state_dict, strict=False) |
|
self.cfm_length_regulator.load_state_dict(cfm_length_regulator_state_dict, strict=False) |
|
|
|
|
|
ar_checkpoint = torch.load(ar_checkpoint_path, map_location="cpu") |
|
ar_length_regulator_state_dict = self.strip_prefix(ar_checkpoint["net"]['length_regulator'], "module.") |
|
ar_state_dict = self.strip_prefix(ar_checkpoint["net"]['ar'], "module.") |
|
self.ar.load_state_dict(ar_state_dict, strict=False) |
|
self.ar_length_regulator.load_state_dict(ar_length_regulator_state_dict, strict=False) |
|
|
|
|
|
content_extractor_narrow_checkpoint_path = load_custom_model_from_hf( |
|
repo_id=DEFAULT_CE_REPO_ID, |
|
model_filename=DEFAULT_CE_NARROW_CHECKPOINT, |
|
) |
|
content_extractor_narrow_checkpoint = torch.load(content_extractor_narrow_checkpoint_path, map_location="cpu") |
|
self.content_extractor_narrow.load_state_dict( |
|
content_extractor_narrow_checkpoint, strict=False |
|
) |
|
|
|
content_extractor_wide_checkpoint_path = load_custom_model_from_hf( |
|
repo_id=DEFAULT_CE_REPO_ID, |
|
model_filename=DEFAULT_CE_WIDE_CHECKPOINT, |
|
) |
|
content_extractor_wide_checkpoint = torch.load(content_extractor_wide_checkpoint_path, map_location="cpu") |
|
self.content_extractor_wide.load_state_dict( |
|
content_extractor_wide_checkpoint, strict=False |
|
) |
|
|
|
|
|
style_encoder_checkpoint_path = load_custom_model_from_hf(DEFAULT_SE_REPO_ID, DEFAULT_SE_CHECKPOINT, config_filename=None) |
|
style_encoder_checkpoint = torch.load(style_encoder_checkpoint_path, map_location="cpu") |
|
self.style_encoder.load_state_dict(style_encoder_checkpoint, strict=False) |
|
|
|
def setup_ar_caches(self, max_batch_size=1, max_seq_len=4096, dtype=torch.float32, device=torch.device("cpu")): |
|
self.ar.setup_caches(max_batch_size=max_batch_size, max_seq_len=max_seq_len, dtype=dtype, device=device) |
|
|
|
def compute_style(self, waves_16k: torch.Tensor): |
|
feat = torchaudio.compliance.kaldi.fbank(waves_16k, |
|
num_mel_bins=80, |
|
dither=0, |
|
sample_frequency=16000) |
|
feat = feat - feat.mean(dim=0, keepdim=True) |
|
style = self.style_encoder(feat.unsqueeze(0)) |
|
return style |
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def convert_timbre( |
|
self, |
|
source_audio_path: str, |
|
target_audio_path: str, |
|
diffusion_steps: int = 30, |
|
length_adjust: float = 1.0, |
|
inference_cfg_rate: float = 0.5, |
|
use_sway_sampling: bool = False, |
|
use_amo_sampling: bool = False, |
|
device: torch.device = torch.device("cpu"), |
|
dtype: torch.dtype = torch.float32, |
|
): |
|
source_wave = librosa.load(source_audio_path, sr=self.sr)[0] |
|
target_wave = librosa.load(target_audio_path, sr=self.sr)[0] |
|
source_wave_tensor = torch.tensor(source_wave).unsqueeze(0).to(device) |
|
target_wave_tensor = torch.tensor(target_wave).unsqueeze(0).to(device) |
|
|
|
|
|
source_wave_16k = librosa.resample(source_wave, orig_sr=self.sr, target_sr=16000) |
|
target_wave_16k = librosa.resample(target_wave, orig_sr=self.sr, target_sr=16000) |
|
source_wave_16k_tensor = torch.tensor(source_wave_16k).unsqueeze(0).to(device) |
|
target_wave_16k_tensor = torch.tensor(target_wave_16k).unsqueeze(0).to(device) |
|
|
|
|
|
source_mel = self.mel_fn(source_wave_tensor) |
|
target_mel = self.mel_fn(target_wave_tensor) |
|
source_mel_len = source_mel.size(2) |
|
target_mel_len = target_mel.size(2) |
|
|
|
with torch.autocast(device_type=device.type, dtype=dtype): |
|
|
|
_, source_content_indices, _ = self.content_extractor_wide(source_wave_16k_tensor, [source_wave_16k.size]) |
|
_, target_content_indices, _ = self.content_extractor_wide(target_wave_16k_tensor, [target_wave_16k.size]) |
|
|
|
|
|
target_style = self.compute_style(target_wave_16k_tensor) |
|
|
|
|
|
cond, _ = self.cfm_length_regulator(source_content_indices, ylens=torch.LongTensor([source_mel_len]).to(device)) |
|
prompt_condition, _, = self.cfm_length_regulator(target_content_indices, ylens=torch.LongTensor([target_mel_len]).to(device)) |
|
|
|
cat_condition = torch.cat([prompt_condition, cond], dim=1) |
|
|
|
vc_mel = self.cfm.inference( |
|
cat_condition, |
|
torch.LongTensor([cat_condition.size(1)]).to(device), |
|
target_mel, target_style, diffusion_steps, |
|
inference_cfg_rate=inference_cfg_rate, |
|
sway_sampling=use_sway_sampling, |
|
amo_sampling=use_amo_sampling, |
|
) |
|
vc_mel = vc_mel[:, :, target_mel_len:] |
|
vc_wave = self.vocoder(vc_mel.float()).squeeze()[None] |
|
return vc_wave.cpu().numpy() |
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def convert_voice( |
|
self, |
|
source_audio_path: str, |
|
target_audio_path: str, |
|
diffusion_steps: int = 30, |
|
length_adjust: float = 1.0, |
|
inference_cfg_rate: float = 0.5, |
|
top_p: float = 0.7, |
|
temperature: float = 0.7, |
|
repetition_penalty: float = 1.5, |
|
use_sway_sampling: bool = False, |
|
use_amo_sampling: bool = False, |
|
device: torch.device = torch.device("cpu"), |
|
dtype: torch.dtype = torch.float32, |
|
): |
|
source_wave = librosa.load(source_audio_path, sr=self.sr)[0] |
|
target_wave = librosa.load(target_audio_path, sr=self.sr)[0] |
|
source_wave_tensor = torch.tensor(source_wave).unsqueeze(0).to(device) |
|
target_wave_tensor = torch.tensor(target_wave).unsqueeze(0).to(device) |
|
|
|
|
|
source_wave_16k = librosa.resample(source_wave, orig_sr=self.sr, target_sr=16000) |
|
target_wave_16k = librosa.resample(target_wave, orig_sr=self.sr, target_sr=16000) |
|
source_wave_16k_tensor = torch.tensor(source_wave_16k).unsqueeze(0).to(device) |
|
target_wave_16k_tensor = torch.tensor(target_wave_16k).unsqueeze(0).to(device) |
|
|
|
|
|
source_mel = self.mel_fn(source_wave_tensor) |
|
target_mel = self.mel_fn(target_wave_tensor) |
|
source_mel_len = source_mel.size(2) |
|
target_mel_len = target_mel.size(2) |
|
|
|
with torch.autocast(device_type=device.type, dtype=dtype): |
|
|
|
_, source_content_indices, _ = self.content_extractor_wide(source_wave_16k_tensor, [source_wave_16k.size]) |
|
_, target_content_indices, _ = self.content_extractor_wide(target_wave_16k_tensor, [target_wave_16k.size]) |
|
|
|
_, source_narrow_indices, _ = self.content_extractor_narrow(source_wave_16k_tensor, |
|
[source_wave_16k.size], ssl_model=self.content_extractor_wide.ssl_model) |
|
_, target_narrow_indices, _ = self.content_extractor_narrow(target_wave_16k_tensor, |
|
[target_wave_16k.size], ssl_model=self.content_extractor_wide.ssl_model) |
|
|
|
src_narrow_reduced, src_narrow_len = self.duration_reduction_func(source_narrow_indices[0], 1) |
|
tgt_narrow_reduced, tgt_narrow_len = self.duration_reduction_func(target_narrow_indices[0], 1) |
|
|
|
ar_cond = self.ar_length_regulator(torch.cat([tgt_narrow_reduced, src_narrow_reduced], dim=0)[None])[0] |
|
|
|
ar_out = self.ar.generate(ar_cond, target_content_indices, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty) |
|
ar_out_mel_len = torch.LongTensor([int(source_mel_len / source_content_indices.size(-1) * ar_out.size(-1) * length_adjust)]).to(device) |
|
|
|
target_style = self.compute_style(target_wave_16k_tensor) |
|
|
|
|
|
cond, _ = self.cfm_length_regulator(ar_out, ylens=torch.LongTensor([ar_out_mel_len]).to(device)) |
|
prompt_condition, _, = self.cfm_length_regulator(target_content_indices, ylens=torch.LongTensor([target_mel_len]).to(device)) |
|
|
|
cat_condition = torch.cat([prompt_condition, cond], dim=1) |
|
|
|
vc_mel = self.cfm.inference( |
|
cat_condition, |
|
torch.LongTensor([cat_condition.size(1)]).to(device), |
|
target_mel, target_style, diffusion_steps, |
|
inference_cfg_rate=inference_cfg_rate, |
|
sway_sampling=use_sway_sampling, |
|
amo_sampling=use_amo_sampling, |
|
) |
|
vc_mel = vc_mel[:, :, target_mel_len:] |
|
vc_wave = self.vocoder(vc_mel.float()).squeeze()[None] |
|
return vc_wave.cpu().numpy() |
|
|
|
def _process_content_features(self, audio_16k_tensor, is_narrow=False): |
|
"""Process audio through Whisper model to extract features.""" |
|
content_extractor_fn = self.content_extractor_narrow if is_narrow else self.content_extractor_wide |
|
if audio_16k_tensor.size(-1) <= 16000 * 30: |
|
|
|
_, content_indices, _ = content_extractor_fn(audio_16k_tensor, [audio_16k_tensor.size(-1)], ssl_model=self.content_extractor_wide.ssl_model) |
|
else: |
|
|
|
overlapping_time = 5 |
|
features_list = [] |
|
buffer = None |
|
traversed_time = 0 |
|
while traversed_time < audio_16k_tensor.size(-1): |
|
if buffer is None: |
|
chunk = audio_16k_tensor[:, traversed_time:traversed_time + 16000 * 30] |
|
else: |
|
chunk = torch.cat([ |
|
buffer, |
|
audio_16k_tensor[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)] |
|
], dim=-1) |
|
_, chunk_content_indices, _ = content_extractor_fn(chunk, [chunk.size(-1)], ssl_model=self.content_extractor_wide.ssl_model) |
|
if traversed_time == 0: |
|
features_list.append(chunk_content_indices) |
|
else: |
|
features_list.append(chunk_content_indices[:, 50 * overlapping_time:]) |
|
buffer = chunk[:, -16000 * overlapping_time:] |
|
traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time |
|
content_indices = torch.cat(features_list, dim=1) |
|
|
|
return content_indices |
|
|
|
@spaces.GPU |
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def convert_voice_with_streaming( |
|
self, |
|
source_audio_path: str, |
|
target_audio_path: str, |
|
diffusion_steps: int = 30, |
|
length_adjust: float = 1.0, |
|
intelligebility_cfg_rate: float = 0.7, |
|
similarity_cfg_rate: float = 0.7, |
|
top_p: float = 0.7, |
|
temperature: float = 0.7, |
|
repetition_penalty: float = 1.5, |
|
convert_style: bool = False, |
|
anonymization_only: bool = False, |
|
device: torch.device = torch.device("cuda"), |
|
dtype: torch.dtype = torch.float16, |
|
stream_output: bool = True, |
|
): |
|
""" |
|
Convert voice with streaming support for long audio files. |
|
|
|
Args: |
|
source_audio_path: Path to source audio file |
|
target_audio_path: Path to target audio file |
|
diffusion_steps: Number of diffusion steps (default: 30) |
|
length_adjust: Length adjustment factor (default: 1.0) |
|
intelligebility_cfg_rate: CFG rate for intelligibility (default: 0.7) |
|
similarity_cfg_rate: CFG rate for similarity (default: 0.7) |
|
top_p: Top-p sampling parameter (default: 0.7) |
|
temperature: Temperature for sampling (default: 0.7) |
|
repetition_penalty: Repetition penalty (default: 1.5) |
|
device: Device to use (default: cpu) |
|
dtype: Data type to use (default: float32) |
|
stream_output: Whether to stream the output (default: True) |
|
|
|
Returns: |
|
If stream_output is True, yields (mp3_bytes, full_audio) tuples |
|
If stream_output is False, returns the full audio as a numpy array |
|
""" |
|
|
|
source_wave = librosa.load(source_audio_path, sr=self.sr)[0] |
|
target_wave = librosa.load(target_audio_path, sr=self.sr)[0] |
|
|
|
|
|
target_wave = target_wave[:self.sr * (self.dit_max_context_len - 5)] |
|
|
|
source_wave_tensor = torch.tensor(source_wave).unsqueeze(0).float().to(device) |
|
target_wave_tensor = torch.tensor(target_wave).unsqueeze(0).float().to(device) |
|
|
|
|
|
source_wave_16k = librosa.resample(source_wave, orig_sr=self.sr, target_sr=16000) |
|
target_wave_16k = librosa.resample(target_wave, orig_sr=self.sr, target_sr=16000) |
|
source_wave_16k_tensor = torch.tensor(source_wave_16k).unsqueeze(0).to(device) |
|
target_wave_16k_tensor = torch.tensor(target_wave_16k).unsqueeze(0).to(device) |
|
|
|
|
|
source_mel = self.mel_fn(source_wave_tensor) |
|
target_mel = self.mel_fn(target_wave_tensor) |
|
source_mel_len = source_mel.size(2) |
|
target_mel_len = target_mel.size(2) |
|
|
|
|
|
max_context_window = self.sr // self.hop_size * self.dit_max_context_len |
|
overlap_wave_len = self.overlap_frame_len * self.hop_size |
|
|
|
with torch.autocast(device_type=device.type, dtype=dtype): |
|
|
|
source_content_indices = self._process_content_features(source_wave_16k_tensor, is_narrow=False) |
|
target_content_indices = self._process_content_features(target_wave_16k_tensor, is_narrow=False) |
|
|
|
target_style = self.compute_style(target_wave_16k_tensor) |
|
prompt_condition, _, = self.cfm_length_regulator(target_content_indices, |
|
ylens=torch.LongTensor([target_mel_len]).to(device)) |
|
|
|
|
|
generated_wave_chunks = [] |
|
processed_frames = 0 |
|
previous_chunk = None |
|
if convert_style: |
|
with torch.autocast(device_type=device.type, dtype=dtype): |
|
source_narrow_indices = self._process_content_features(source_wave_16k_tensor, is_narrow=True) |
|
target_narrow_indices = self._process_content_features(target_wave_16k_tensor, is_narrow=True) |
|
src_narrow_reduced, src_narrow_len = self.duration_reduction_func(source_narrow_indices[0], 1) |
|
tgt_narrow_reduced, tgt_narrow_len = self.duration_reduction_func(target_narrow_indices[0], 1) |
|
|
|
max_chunk_size = self.ar_max_content_len - tgt_narrow_len |
|
|
|
|
|
for i in range(0, len(src_narrow_reduced), max_chunk_size): |
|
is_last_chunk = i + max_chunk_size >= len(src_narrow_reduced) |
|
with torch.autocast(device_type=device.type, dtype=dtype): |
|
chunk = src_narrow_reduced[i:i + max_chunk_size] |
|
if anonymization_only: |
|
chunk_ar_cond = self.ar_length_regulator(chunk[None])[0] |
|
chunk_ar_out = self.ar.generate(chunk_ar_cond, torch.zeros([1, 0]).long().to(device), |
|
compiled_decode_fn=self.compiled_decode_fn, |
|
top_p=top_p, temperature=temperature, |
|
repetition_penalty=repetition_penalty) |
|
else: |
|
|
|
chunk_ar_cond = self.ar_length_regulator(torch.cat([tgt_narrow_reduced, chunk], dim=0)[None])[0] |
|
chunk_ar_out = self.ar.generate(chunk_ar_cond, target_content_indices, compiled_decode_fn=self.compiled_decode_fn, |
|
top_p=top_p, temperature=temperature, |
|
repetition_penalty=repetition_penalty) |
|
chunkar_out_mel_len = torch.LongTensor([int(source_mel_len / source_content_indices.size( |
|
-1) * chunk_ar_out.size(-1) * length_adjust)]).to(device) |
|
|
|
chunk_cond, _ = self.cfm_length_regulator(chunk_ar_out, ylens=torch.LongTensor([chunkar_out_mel_len]).to(device)) |
|
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1) |
|
original_len = cat_condition.size(1) |
|
|
|
if self.dit_compiled: |
|
cat_condition = torch.nn.functional.pad(cat_condition, |
|
(0, 0, 0, self.compile_len - cat_condition.size(1),), |
|
value=0) |
|
|
|
vc_mel = self.cfm.inference( |
|
cat_condition, |
|
torch.LongTensor([original_len]).to(device), |
|
target_mel, target_style, diffusion_steps, |
|
inference_cfg_rate=[intelligebility_cfg_rate, similarity_cfg_rate], |
|
random_voice=anonymization_only, |
|
) |
|
vc_mel = vc_mel[:, :, target_mel_len:original_len] |
|
vc_wave = self.vocoder(vc_mel).squeeze()[None] |
|
processed_frames, previous_chunk, should_break, mp3_bytes, full_audio = self._stream_wave_chunks( |
|
vc_wave, processed_frames, vc_mel, overlap_wave_len, |
|
generated_wave_chunks, previous_chunk, is_last_chunk, stream_output |
|
) |
|
|
|
if stream_output and mp3_bytes is not None: |
|
yield mp3_bytes, full_audio |
|
|
|
if should_break: |
|
if not stream_output: |
|
return full_audio |
|
break |
|
else: |
|
cond, _ = self.cfm_length_regulator(source_content_indices, ylens=torch.LongTensor([source_mel_len]).to(device)) |
|
|
|
|
|
max_source_window = max_context_window - target_mel.size(2) |
|
|
|
|
|
while processed_frames < cond.size(1): |
|
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window] |
|
is_last_chunk = processed_frames + max_source_window >= cond.size(1) |
|
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1) |
|
original_len = cat_condition.size(1) |
|
|
|
if self.dit_compiled: |
|
cat_condition = torch.nn.functional.pad(cat_condition, |
|
(0, 0, 0, self.compile_len - cat_condition.size(1),), value=0) |
|
with torch.autocast(device_type=device.type, dtype=dtype): |
|
|
|
vc_mel = self.cfm.inference( |
|
cat_condition, |
|
torch.LongTensor([original_len]).to(device), |
|
target_mel, target_style, diffusion_steps, |
|
inference_cfg_rate=[intelligebility_cfg_rate, similarity_cfg_rate], |
|
random_voice=anonymization_only, |
|
) |
|
vc_mel = vc_mel[:, :, target_mel_len:original_len] |
|
vc_wave = self.vocoder(vc_mel).squeeze()[None] |
|
|
|
processed_frames, previous_chunk, should_break, mp3_bytes, full_audio = self._stream_wave_chunks( |
|
vc_wave, processed_frames, vc_mel, overlap_wave_len, |
|
generated_wave_chunks, previous_chunk, is_last_chunk, stream_output |
|
) |
|
|
|
if stream_output and mp3_bytes is not None: |
|
yield mp3_bytes, full_audio |
|
|
|
if should_break: |
|
if not stream_output: |
|
return full_audio |
|
break |