|
import torch
|
|
from tqdm import tqdm
|
|
|
|
class CFM(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
estimator: torch.nn.Module,
|
|
):
|
|
super().__init__()
|
|
self.sigma_min = 1e-6
|
|
self.estimator = estimator
|
|
self.in_channels = estimator.in_channels
|
|
self.criterion = torch.nn.L1Loss()
|
|
|
|
@torch.inference_mode()
|
|
def inference(self,
|
|
mu: torch.Tensor,
|
|
x_lens: torch.Tensor,
|
|
prompt: torch.Tensor,
|
|
style: torch.Tensor,
|
|
n_timesteps=10,
|
|
temperature=1.0,
|
|
inference_cfg_rate=[0.5, 0.5],
|
|
random_voice=False,
|
|
):
|
|
"""Forward diffusion
|
|
|
|
Args:
|
|
mu (torch.Tensor): output of encoder
|
|
shape: (batch_size, n_feats, mel_timesteps)
|
|
x_lens (torch.Tensor): length of each mel-spectrogram
|
|
shape: (batch_size,)
|
|
prompt (torch.Tensor): prompt
|
|
shape: (batch_size, n_feats, prompt_len)
|
|
style (torch.Tensor): style
|
|
shape: (batch_size, style_dim)
|
|
n_timesteps (int): number of diffusion steps
|
|
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
|
inference_cfg_rate (float, optional): Classifier-Free Guidance inference introduced in VoiceBox. Defaults to 0.5.
|
|
|
|
Returns:
|
|
sample: generated mel-spectrogram
|
|
shape: (batch_size, n_feats, mel_timesteps)
|
|
"""
|
|
B, T = mu.size(0), mu.size(1)
|
|
z = torch.randn([B, self.in_channels, T], device=mu.device) * temperature
|
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
|
t_span = t_span + (-1) * (torch.cos(torch.pi / 2 * t_span) - 1 + t_span)
|
|
return self.solve_euler(z, x_lens, prompt, mu, style, t_span, inference_cfg_rate, random_voice)
|
|
def solve_euler(self, x, x_lens, prompt, mu, style, t_span, inference_cfg_rate=[0.5, 0.5], random_voice=False,):
|
|
"""
|
|
Fixed euler solver for ODEs.
|
|
Args:
|
|
x (torch.Tensor): random noise
|
|
t_span (torch.Tensor): n_timesteps interpolated
|
|
shape: (n_timesteps + 1,)
|
|
mu (torch.Tensor): output of encoder
|
|
shape: (batch_size, n_feats, mel_timesteps)
|
|
x_lens (torch.Tensor): length of each mel-spectrogram
|
|
shape: (batch_size,)
|
|
prompt (torch.Tensor): prompt
|
|
shape: (batch_size, n_feats, prompt_len)
|
|
style (torch.Tensor): style
|
|
shape: (batch_size, style_dim)
|
|
inference_cfg_rate (float, optional): Classifier-Free Guidance inference introduced in VoiceBox. Defaults to 0.5.
|
|
sway_sampling (bool, optional): Sway sampling. Defaults to False.
|
|
amo_sampling (bool, optional): AMO sampling. Defaults to False.
|
|
"""
|
|
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
|
|
|
|
|
prompt_len = prompt.size(-1)
|
|
prompt_x = torch.zeros_like(x)
|
|
prompt_x[..., :prompt_len] = prompt[..., :prompt_len]
|
|
x[..., :prompt_len] = 0
|
|
for step in tqdm(range(1, len(t_span))):
|
|
if random_voice:
|
|
cfg_dphi_dt = self.estimator(
|
|
torch.cat([x, x], dim=0),
|
|
torch.cat([torch.zeros_like(prompt_x), torch.zeros_like(prompt_x)], dim=0),
|
|
torch.cat([x_lens, x_lens], dim=0),
|
|
torch.cat([t.unsqueeze(0), t.unsqueeze(0)], dim=0),
|
|
torch.cat([torch.zeros_like(style), torch.zeros_like(style)], dim=0),
|
|
torch.cat([mu, torch.zeros_like(mu)], dim=0),
|
|
)
|
|
cond_txt, uncond = cfg_dphi_dt[0:1], cfg_dphi_dt[1:2]
|
|
dphi_dt = ((1.0 + inference_cfg_rate[0]) * cond_txt - inference_cfg_rate[0] * uncond)
|
|
elif all(i == 0 for i in inference_cfg_rate):
|
|
dphi_dt = self.estimator(x, prompt_x, x_lens, t.unsqueeze(0), style, mu)
|
|
elif inference_cfg_rate[0] == 0:
|
|
|
|
cfg_dphi_dt = self.estimator(
|
|
torch.cat([x, x], dim=0),
|
|
torch.cat([prompt_x, torch.zeros_like(prompt_x)], dim=0),
|
|
torch.cat([x_lens, x_lens], dim=0),
|
|
torch.cat([t.unsqueeze(0), t.unsqueeze(0)], dim=0),
|
|
torch.cat([style, torch.zeros_like(style)], dim=0),
|
|
torch.cat([mu, mu], dim=0),
|
|
)
|
|
cond_txt_spk, cond_txt = cfg_dphi_dt[0:1], cfg_dphi_dt[1:2]
|
|
dphi_dt = ((1.0 + inference_cfg_rate[1]) * cond_txt_spk - inference_cfg_rate[1] * cond_txt)
|
|
elif inference_cfg_rate[1] == 0:
|
|
cfg_dphi_dt = self.estimator(
|
|
torch.cat([x, x], dim=0),
|
|
torch.cat([prompt_x, torch.zeros_like(prompt_x)], dim=0),
|
|
torch.cat([x_lens, x_lens], dim=0),
|
|
torch.cat([t.unsqueeze(0), t.unsqueeze(0)], dim=0),
|
|
torch.cat([style, torch.zeros_like(style)], dim=0),
|
|
torch.cat([mu, torch.zeros_like(mu)], dim=0),
|
|
)
|
|
cond_txt_spk, uncond = cfg_dphi_dt[0:1], cfg_dphi_dt[1:2]
|
|
dphi_dt = ((1.0 + inference_cfg_rate[0]) * cond_txt_spk - inference_cfg_rate[0] * uncond)
|
|
else:
|
|
|
|
cfg_dphi_dt = self.estimator(
|
|
torch.cat([x, x, x], dim=0),
|
|
torch.cat([prompt_x, torch.zeros_like(prompt_x), torch.zeros_like(prompt_x)], dim=0),
|
|
torch.cat([x_lens, x_lens, x_lens], dim=0),
|
|
torch.cat([t.unsqueeze(0), t.unsqueeze(0), t.unsqueeze(0)], dim=0),
|
|
torch.cat([style, torch.zeros_like(style), torch.zeros_like(style)], dim=0),
|
|
torch.cat([mu, mu, torch.zeros_like(mu)], dim=0),
|
|
)
|
|
cond_txt_spk, cond_txt, uncond = cfg_dphi_dt[0:1], cfg_dphi_dt[1:2], cfg_dphi_dt[2:3]
|
|
dphi_dt = (1.0 + inference_cfg_rate[0] + inference_cfg_rate[1]) * cond_txt_spk - \
|
|
inference_cfg_rate[0] * uncond - inference_cfg_rate[1] * cond_txt
|
|
x = x + dt * dphi_dt
|
|
t = t + dt
|
|
if step < len(t_span) - 1:
|
|
dt = t_span[step + 1] - t
|
|
x[:, :, :prompt_len] = 0
|
|
|
|
return x
|
|
|
|
def forward(self, x1, x_lens, prompt_lens, mu, style):
|
|
"""Computes diffusion loss
|
|
|
|
Args:
|
|
x1 (torch.Tensor): Target
|
|
shape: (batch_size, n_feats, mel_timesteps)
|
|
mask (torch.Tensor): target mask
|
|
shape: (batch_size, 1, mel_timesteps)
|
|
mu (torch.Tensor): output of encoder
|
|
shape: (batch_size, n_feats, mel_timesteps)
|
|
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
|
shape: (batch_size, spk_emb_dim)
|
|
|
|
Returns:
|
|
loss: conditional flow matching loss
|
|
y: conditional flow
|
|
shape: (batch_size, n_feats, mel_timesteps)
|
|
"""
|
|
b, _, t = x1.shape
|
|
|
|
|
|
t = torch.rand([b, 1, 1], device=mu.device, dtype=x1.dtype)
|
|
|
|
z = torch.randn_like(x1)
|
|
|
|
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
|
u = x1 - (1 - self.sigma_min) * z
|
|
prompt = torch.zeros_like(x1)
|
|
for bib in range(b):
|
|
prompt[bib, :, :prompt_lens[bib]] = x1[bib, :, :prompt_lens[bib]]
|
|
|
|
y[bib, :, :prompt_lens[bib]] = 0
|
|
|
|
estimator_out = self.estimator(y, prompt, x_lens, t.squeeze(), style, mu)
|
|
loss = 0
|
|
for bib in range(b):
|
|
loss += self.criterion(estimator_out[bib, :, prompt_lens[bib]:x_lens[bib]], u[bib, :, prompt_lens[bib]:x_lens[bib]])
|
|
loss /= b
|
|
|
|
return loss
|
|
|