Spaces:
Sleeping
Sleeping
add model transforms
Browse files
app.py
CHANGED
|
@@ -14,8 +14,11 @@ categories = ("Aculus Olearius", "Healthy", "Peacock Spot")
|
|
| 14 |
def classify_health(input_img):
|
| 15 |
input_img = transforms.ToTensor()(input_img)
|
| 16 |
with torch.no_grad():
|
| 17 |
-
image = data_transforms(input_img).unsqueeze(0)
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
| 19 |
idx = probs.argmax(dim=1)
|
| 20 |
return dict(zip(categories, map(float, probs[0])))
|
| 21 |
|
|
|
|
| 14 |
def classify_health(input_img):
|
| 15 |
input_img = transforms.ToTensor()(input_img)
|
| 16 |
with torch.no_grad():
|
| 17 |
+
image = data_transforms(input_img).unsqueeze(0)
|
| 18 |
+
output = model(image)
|
| 19 |
+
print(output)
|
| 20 |
+
print(output.shape)
|
| 21 |
+
probs = torch.nn.functional.softmax(model(image)[0], dim=0)
|
| 22 |
idx = probs.argmax(dim=1)
|
| 23 |
return dict(zip(categories, map(float, probs[0])))
|
| 24 |
|