Spaces:
Runtime error
Runtime error
import argparse | |
import os | |
import random | |
import numpy as np | |
import torch | |
import torch.backends.cudnn as cudnn | |
import gradio as gr | |
from bliva.common.config import Config | |
from bliva.common.dist_utils import get_rank | |
from bliva.common.registry import registry | |
from bliva.conversation.conversation import Chat, CONV_VISION, CONV_DIRECT | |
# imports modules for registration | |
from bliva.models import * | |
from bliva.processors import * | |
from bliva.models import load_model_and_preprocess | |
from evaluate import disable_torch_init | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Demo") | |
parser.add_argument("--model_name",default='bliva_vicuna', type=str, help='model name') | |
parser.add_argument("--gpu_id", type=int, default=0, help="specify the gpu to load the model.") | |
args = parser.parse_args() | |
return args | |
# ======================================== | |
# Model Initialization | |
# ======================================== | |
print('Initializing Chat') | |
args = parse_args() | |
if torch.cuda.is_available(): | |
device='cuda:{}'.format(args.gpu_id) | |
else: | |
device=torch.device('cpu') | |
disable_torch_init() | |
if args.model_name == "blip2_vicuna_instruct": | |
model, vis_processors, _ = load_model_and_preprocess(name=args.model_name, model_type="vicuna7b", is_eval=True, device=device) | |
elif args.model_name == "bliva_vicuna": | |
model, vis_processors, _ = load_model_and_preprocess(name=args.model_name, model_type="vicuna7b", is_eval=True, device=device) | |
elif args.model_name == "bliva_flant5": | |
model, vis_processors, _ = load_model_and_preprocess(name=args.model_name, model_type="flant5xxl", is_eval=True, device=device) | |
else: | |
print("Model not found") | |
vis_processor = vis_processors["eval"] | |
# vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train | |
# vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) | |
chat = Chat(model, vis_processor, device=device) | |
print('Initialization Finished') | |
# ======================================== | |
# Gradio Setting | |
# ======================================== | |
def gradio_reset(chat_state, img_list): | |
if chat_state is not None: | |
chat_state.messages = [] | |
if img_list is not None: | |
img_list = [] | |
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list | |
def upload_img(gr_img, text_input, chat_state): | |
if gr_img is None: | |
return None, None, gr.update(interactive=True), chat_state, None | |
chat_state = CONV_DIRECT.copy() #CONV_VISION.copy() | |
img_list = [] | |
llm_message = chat.upload_img(gr_img, chat_state, img_list) | |
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list | |
def gradio_ask(user_message, chatbot, chat_state): | |
if len(user_message) == 0: | |
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state | |
chat.ask(user_message, chat_state) | |
chatbot = chatbot + [[user_message, None]] | |
return '', chatbot, chat_state | |
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature): | |
llm_message = chat.answer(conv=chat_state, | |
img_list=img_list, | |
num_beams=num_beams, | |
temperature=temperature, | |
max_new_tokens=300, | |
max_length=2000)[0] | |
chatbot[-1][1] = llm_message[0] | |
return chatbot, chat_state, img_list | |
title = """<h1 align="center">Demo of BLIVA</h1>""" | |
description = """<h3>This is the demo of BLIVA. Upload your images and start chatting!. <br> To use | |
example questions, click example image, hit upload, and press enter in the chatbox.</h3>""" | |
article = """<p><a href='https://gordonhu608.github.io/bliva/'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p><a href='https://github.com/mlpc-ucsd/BLIVA'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p><a href='https://arxiv.org/abs/2308.09936'><img src='https://img.shields.io/badge/Paper-ArXiv-red'></a></p> | |
""" | |
#TODO show examples below | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
gr.Markdown(article) | |
with gr.Row(): | |
with gr.Column(scale=0.5): | |
image = gr.Image(type="pil") | |
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary") | |
clear = gr.Button("Restart π") | |
num_beams = gr.Slider( | |
minimum=1, | |
maximum=10, | |
value=5, | |
step=1, | |
interactive=True, | |
label="beam search numbers)", | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=2.0, | |
value=1.0, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
with gr.Column(): | |
chat_state = gr.State() | |
img_list = gr.State() | |
chatbot = gr.Chatbot(label='BLIVA') | |
text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False) | |
gr.Examples(examples=[ | |
[f"images/example.jpg", "Describe this image in detail."], | |
[f"images/img3.jpg", "What is this image about?"], | |
[f"images/img4.jpg", "What is the title of this movie?"], | |
], inputs=[image, text_input]) | |
upload_button.click(upload_img, [image, text_input, chat_state], [image, text_input, upload_button, chat_state, img_list]) | |
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then( | |
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list] | |
) | |
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list], queue=False) | |
demo.launch(enable_queue=True) |