mlkorra commited on
Commit
b1cf2dc
·
1 Parent(s): d7a6200

update app

Browse files
Files changed (1) hide show
  1. app.py +13 -19
app.py CHANGED
@@ -26,28 +26,28 @@ def load_model(text):
26
  #result_sentence = nlp(masked_text)
27
  #return result_sentence[0]["sequence"], result_sentence[0]["token_str"]
28
 
 
29
  def app():
30
  st.title("OGBV-BERT")
31
- #st.markdown("This demo uses multiple hindi transformer models for Masked Language Modelling (MLM).")
32
- #models_list = list(cfg["models"].keys())
33
- #models = st.multiselect("Choose models", models_list, models_list)
34
-
35
  target_text_path = "./input/tweet_list.csv"
36
  target_text_df = pd.read_csv(target_text_path)
37
  texts = target_text_df["text"]
38
  st.sidebar.title("Place")
39
  pick_random = st.sidebar.checkbox("Pick any random text")
40
 
41
- #results_df = pd.DataFrame(columns=["Model Name", "Filled Token", "Filled Text"])
42
- #model_names = []
43
- ##filled_masked_texts = []
44
- #filled_tokens = []
45
  if pick_random:
46
  random_text = texts[random.randint(0, texts.shape[0] - 1)]
47
- masked_text = st.text_area("Please type a sentence to classify", random_text)
 
 
 
48
  else:
49
  select_text = st.sidebar.selectbox("Select any of the following text", texts)
50
- masked_text = st.text_area("Please type a sentence to classify", select_text)
 
 
51
 
52
 
53
  # pd.set_option('max_colwidth',30)
@@ -56,12 +56,6 @@ def app():
56
  pred = load_model(masked_text)
57
  st.write(pred)
58
 
59
- # for selected_model in models:
60
- # filled_sentence, filled_token = load_model(masked_text, cfg["models"][selected_model])
61
- # model_names.append(selected_model)
62
- # filled_tokens.append(filled_token)
63
- # filled_masked_texts.append(filled_sentence)
64
- # results_df["Model Name"] = model_names
65
- # results_df["Filled Token"] = filled_tokens
66
- # results_df["Filled Text"] = filled_masked_texts
67
- # st.table(results_df)
 
26
  #result_sentence = nlp(masked_text)
27
  #return result_sentence[0]["sequence"], result_sentence[0]["token_str"]
28
 
29
+ import re
30
  def app():
31
  st.title("OGBV-BERT")
32
+
 
 
 
33
  target_text_path = "./input/tweet_list.csv"
34
  target_text_df = pd.read_csv(target_text_path)
35
  texts = target_text_df["text"]
36
  st.sidebar.title("Place")
37
  pick_random = st.sidebar.checkbox("Pick any random text")
38
 
39
+
 
 
 
40
  if pick_random:
41
  random_text = texts[random.randint(0, texts.shape[0] - 1)]
42
+ text = re.sub('@[^\s]+','',random_text)
43
+ text = text[3:]
44
+
45
+ masked_text = st.text_area("Please type a sentence to classify", text)
46
  else:
47
  select_text = st.sidebar.selectbox("Select any of the following text", texts)
48
+ text = re.sub('@[^\s]+','',select_text)
49
+ text = text[3:]
50
+ masked_text = st.text_area("Please type a sentence to classify", text)
51
 
52
 
53
  # pd.set_option('max_colwidth',30)
 
56
  pred = load_model(masked_text)
57
  st.write(pred)
58
 
59
+
60
+ if __name__ == "__main__":
61
+ app()