Mengmeng Liu
initial build
36c7297
raw
history blame contribute delete
960 Bytes
# Load model directly
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from sentence_transformers import SentenceTransformer
from transformers import Trainer
import torch
import torch.nn.functional as F
class ModelWrapper():
def __init__(self, location = "./models/deepset/tinyroberta-squad"):
self.model_location = location
self.tokenizer = AutoTokenizer.from_pretrained(self.model_location)
self.model_qa = AutoModelForQuestionAnswering.from_pretrained(self.model_location)
self.embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def get_embeddings(self, text, isDocument):
if isDocument:
text = text.split(".")
embeddings = self.embedding_model.encode(text)
if isDocument:
embeddings = sum(embeddings).reshape(1,-1)
else:
embeddings = embeddings.reshape(1,-1)
return embeddings