Try out caching some functions to solve spaces issue
Browse files
app.py
CHANGED
@@ -28,8 +28,24 @@ from transformers import pipeline
|
|
28 |
import os
|
29 |
from transformers_interpret import SequenceClassificationExplainer
|
30 |
|
|
|
31 |
# USE_model = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4")
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Page setup
|
35 |
st.set_page_config(
|
@@ -85,23 +101,16 @@ def display_summary(article_name: str):
|
|
85 |
return HTML_WRAPPER.format(soup)
|
86 |
|
87 |
|
88 |
-
##@st.cache(hash_funcs={preshed.maps.PreshMap: my_hash_func})
|
89 |
-
def get_spacy():
|
90 |
-
nlp = spacy.load('en_core_web_lg')
|
91 |
-
return nlp
|
92 |
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
def get_flair_tagger():
|
97 |
-
tagger = SequenceTagger.load("flair/ner-english-ontonotes-fast")
|
98 |
-
return tagger
|
99 |
|
100 |
|
101 |
def get_all_entities_per_sentence(text):
|
102 |
# load all NER models
|
103 |
-
nlp = get_spacy()
|
104 |
-
tagger = get_flair_tagger()
|
105 |
doc = nlp(text)
|
106 |
|
107 |
sentences = list(doc.sents)
|
@@ -186,7 +195,7 @@ def render_dependency_parsing(text: str):
|
|
186 |
|
187 |
# If deps for article: True, otherwise deps for summary calc
|
188 |
def check_dependency(article: bool):
|
189 |
-
nlp = spacy.load('en_core_web_lg')
|
190 |
if article:
|
191 |
text = st.session_state.article_text
|
192 |
all_entities = get_all_entities_per_sentence(text)
|
@@ -266,6 +275,10 @@ metric, indicating the trustworthiness of the generated summary. Throughout this
|
|
266 |
results for some methods on specific examples. These text blocks will be indicated and they change according to the
|
267 |
currently selected article.""")
|
268 |
|
|
|
|
|
|
|
|
|
269 |
# GENERATING SUMMARIES PART
|
270 |
st.header("Generating summaries")
|
271 |
st.markdown("Let’s start by selecting an article text for which we want to generate a summary, or you can provide "
|
|
|
28 |
import os
|
29 |
from transformers_interpret import SequenceClassificationExplainer
|
30 |
|
31 |
+
|
32 |
# USE_model = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4")
|
33 |
+
|
34 |
+
@st.experimental_singleton
|
35 |
+
def get_sentence_embedding_model():
|
36 |
+
return SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
37 |
+
|
38 |
+
@st.experimental_singleton
|
39 |
+
def get_spacy():
|
40 |
+
nlp = spacy.load('en_core_web_lg')
|
41 |
+
return nlp
|
42 |
+
|
43 |
+
@st.experimental_singleton
|
44 |
+
def get_flair_tagger():
|
45 |
+
tagger = SequenceTagger.load("flair/ner-english-ontonotes-fast")
|
46 |
+
return tagger
|
47 |
+
|
48 |
+
|
49 |
|
50 |
# Page setup
|
51 |
st.set_page_config(
|
|
|
101 |
return HTML_WRAPPER.format(soup)
|
102 |
|
103 |
|
|
|
|
|
|
|
|
|
104 |
|
105 |
|
106 |
+
|
107 |
+
|
|
|
|
|
|
|
108 |
|
109 |
|
110 |
def get_all_entities_per_sentence(text):
|
111 |
# load all NER models
|
112 |
+
#nlp = get_spacy()
|
113 |
+
#tagger = get_flair_tagger()
|
114 |
doc = nlp(text)
|
115 |
|
116 |
sentences = list(doc.sents)
|
|
|
195 |
|
196 |
# If deps for article: True, otherwise deps for summary calc
|
197 |
def check_dependency(article: bool):
|
198 |
+
#nlp = spacy.load('en_core_web_lg')
|
199 |
if article:
|
200 |
text = st.session_state.article_text
|
201 |
all_entities = get_all_entities_per_sentence(text)
|
|
|
275 |
results for some methods on specific examples. These text blocks will be indicated and they change according to the
|
276 |
currently selected article.""")
|
277 |
|
278 |
+
tagger = get_flair_tagger()
|
279 |
+
sentence_embedding_model = get_sentence_embedding_model()
|
280 |
+
nlp = get_spacy()
|
281 |
+
|
282 |
# GENERATING SUMMARIES PART
|
283 |
st.header("Generating summaries")
|
284 |
st.markdown("Let’s start by selecting an article text for which we want to generate a summary, or you can provide "
|