Spaces:
Build error
Build error
Tune length parameters so that token size don't exceed 1024 which is the model limit
4f3c9ea
import string | |
import nltk | |
from sumy.parsers import DocumentParser | |
from sumy.parsers.html import HtmlParser | |
from sumy.parsers.plaintext import PlaintextParser | |
from sumy.nlp.tokenizers import Tokenizer | |
from sumy.nlp.stemmers import Stemmer | |
from sumy.summarizers.lsa import LsaSummarizer | |
from sumy.utils import get_stop_words | |
from transformers import Pipeline | |
class Summarizer: | |
DEFAULT_LANGUAGE = "english" | |
DEFAULT_EXTRACTED_ARTICLE_SENTENCES_LENGTH = 15 | |
def __init__(self, pipeline: Pipeline): | |
self.pipeline = pipeline | |
stemmer = Stemmer(Summarizer.DEFAULT_LANGUAGE) | |
self.lsa_summarizer = LsaSummarizer(stemmer) | |
self.lsa_summarizer.stop_words = get_stop_words(language=Summarizer.DEFAULT_LANGUAGE) | |
def sentence_list(summarized_sentences) -> list: | |
summarized_list = [] | |
for sentence in summarized_sentences: | |
summarized_list.append(sentence._text) | |
return summarized_list | |
def join_sentences(summary_sentences: list) -> str: | |
return " ".join([sentence for sentence in summary_sentences]) | |
def split_sentences_by_token_length(summary_sentences: list, split_token_length: int) -> list: | |
accumulated_lists = [] | |
result_list = [] | |
cumulative_token_length = 0 | |
for sentence in summary_sentences: | |
token_list = [token for token in nltk.word_tokenize(sentence) if token not in ['.']] | |
token_length = len(token_list) | |
if token_length + cumulative_token_length > split_token_length and result_list: | |
accumulated_lists.append(Summarizer.join_sentences(result_list)) | |
result_list = [sentence] | |
cumulative_token_length = token_length | |
else: | |
result_list.append(sentence) | |
cumulative_token_length += token_length | |
if result_list: | |
accumulated_lists.append(Summarizer.join_sentences(result_list)) | |
return accumulated_lists | |
def __extractive_summary(self, parser: DocumentParser, sentences_count) -> list: | |
summarized_sentences = self.lsa_summarizer(parser.document, sentences_count) | |
summarized_list = Summarizer.sentence_list(summarized_sentences) | |
return summarized_list | |
def extractive_summary_from_text(self, text: str, sentences_count: int) -> list: | |
parser = PlaintextParser.from_string(text, Tokenizer(Summarizer.DEFAULT_LANGUAGE)) | |
return self.__extractive_summary(parser, sentences_count) | |
def extractive_summary_from_url(self, url: str, sentences_count: int) -> list: | |
parser = HtmlParser.from_url(url, Tokenizer(Summarizer.DEFAULT_LANGUAGE)) | |
return self.__extractive_summary(parser, sentences_count) | |
def abstractive_summary(self, extract_summary_sentences: list) -> list: | |
""" | |
:param extract_summary_sentences: Extractive summary of sentences after Latent semantic analysis | |
:return: List of abstractive summary of sentences after calling distilbart-tos-summarizer-tosdr tokenizer | |
""" | |
wrapped_sentences = Summarizer.split_sentences_by_token_length(extract_summary_sentences, | |
split_token_length=600) | |
# The ml6team/distilbart-tos-summarizer-tosdr tokenizer supports a max of 1024 tokens per input | |
abstractive_summary_list = [] | |
for result in self.pipeline(wrapped_sentences, min_length=32, max_length=512): | |
abstractive_summary_list.append(result['summary_text']) | |
return abstractive_summary_list | |