Spaces:
Running
on
A10G
Running
on
A10G
"""This file contains methods for inference and image generation.""" | |
import logging | |
from typing import List, Tuple, Dict | |
import streamlit as st | |
import torch | |
import gc | |
import time | |
import numpy as np | |
from PIL import Image | |
from PIL import ImageFilter | |
from diffusers import ControlNetModel, UniPCMultistepScheduler | |
from config import WIDTH, HEIGHT | |
from palette import ade_palette | |
from stable_diffusion_controlnet_inpaint_img2img import StableDiffusionControlNetInpaintImg2ImgPipeline | |
from helpers import flush, postprocess_image_masking, convolution | |
from pipelines import ControlNetPipeline, SDPipeline, get_inpainting_pipeline, get_controlnet | |
LOGGING = logging.getLogger(__name__) | |
def make_image_controlnet(image: np.ndarray, | |
mask_image: np.ndarray, | |
controlnet_conditioning_image: np.ndarray, | |
positive_prompt: str, negative_prompt: str, | |
seed: int = 2356132) -> List[Image.Image]: | |
"""Method to make image using controlnet | |
Args: | |
image (np.ndarray): input image | |
mask_image (np.ndarray): mask image | |
controlnet_conditioning_image (np.ndarray): conditioning image | |
positive_prompt (str): positive prompt string | |
negative_prompt (str): negative prompt string | |
seed (int, optional): seed. Defaults to 2356132. | |
Returns: | |
List[Image.Image]: list of generated images | |
""" | |
pipe = get_controlnet() | |
flush() | |
image = Image.fromarray(image).convert("RGB") | |
controlnet_conditioning_image = Image.fromarray(controlnet_conditioning_image).convert("RGB")#.filter(ImageFilter.GaussianBlur(radius = 9)) | |
mask_image = Image.fromarray((mask_image * 255).astype(np.uint8)).convert("RGB") | |
mask_image_postproc = convolution(mask_image) | |
st.success(f"{pipe.queue_size} images in the queue, can take up to {(pipe.queue_size+1) * 10} seconds") | |
generated_image = pipe( | |
prompt=positive_prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=50, | |
strength=1.00, | |
guidance_scale=7.0, | |
generator=[torch.Generator(device="cuda").manual_seed(seed)], | |
image=image, | |
mask_image=mask_image, | |
controlnet_conditioning_image=controlnet_conditioning_image, | |
).images[0] | |
generated_image = postprocess_image_masking(generated_image, image, mask_image_postproc) | |
return generated_image | |
def make_inpainting(positive_prompt: str, | |
image: Image, | |
mask_image: np.ndarray, | |
negative_prompt: str = "") -> List[Image.Image]: | |
"""Method to make inpainting | |
Args: | |
positive_prompt (str): positive prompt string | |
image (Image): input image | |
mask_image (np.ndarray): mask image | |
negative_prompt (str, optional): negative prompt string. Defaults to "". | |
Returns: | |
List[Image.Image]: list of generated images | |
""" | |
pipe = get_inpainting_pipeline() | |
mask_image = Image.fromarray((mask_image * 255).astype(np.uint8)) | |
mask_image_postproc = convolution(mask_image) | |
flush() | |
st.success(f"{pipe.queue_size} images in the queue, can take up to {(pipe.queue_size+1) * 10} seconds") | |
generated_image = pipe(image=image, | |
mask_image=mask_image, | |
prompt=positive_prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=50, | |
height=HEIGHT, | |
width=WIDTH, | |
).images[0] | |
generated_image = postprocess_image_masking(generated_image, image, mask_image_postproc) | |
return generated_image | |